Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác AMCK là hcn vì
AI=IC(I là trung điểm của AC)
IM=IK(K là điểm đối xứng vs M qua I)
=>Tứ giác AMCK là hình bình hành(DHNB số 5)
Xét tứ giác AMCK có góc M vuông
=> Hình bình hành AMCK là hcn
Tứ giác ACMB là hình bình hành vì
Ta có Bm ss AK (MC ss AK theo tính chắt hcn)
Xét tam giác ABC có BM=MC,AI=IC
=>IM là đường trung bình của tam giác ABC
=>IM ss Ab
Mà I nằm giữa M và K =>MK ss AB
=>ABMK là hình bình hành (DHNB số 1)
Vì AMCk là hcn nên chỉ cần MI vuông góc CA là hình vuông
a) Áp dụng tính chất của tam giác cân cho DABC ta có: AM ^ MC và BM = MC
I là trung điểm của AC và K đối xứng với M qua I nên tứ giác AMCK là hình bình hành
Lại có MK = AC (=2MI)
Þ Tứ giác AMCK là hình chữ nhật.
b) Vì tứ giác AMCK là hình chữ nhật (chứng minh ở a) Þ AK//MC và AK = MC = MB nên tứ giác AKMB là hình bình hành.
c) Nếu tứ giác AKMB là hình thoi thì BA = AK = KM= MB.
Þ DMBA cân tại B Þ B A M ^ = A M B ^ = 900 Þ vô lý.
Vậy không có trường hợp nào của D ABC để AKMB là hình thoi.
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a) Tam giác ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AM⊥BC
Tứ giác AMCK có : I là trung điểm của đường chéo MK
I là trung điểm của đường chéo AC
=> AMCK là hình bình hành
mà góc AMC bằng 90 độ
=> AMCK là hình chữ nhật
b) Ta có: AK =MC ( 2 cạnh đối trong hình chữ nhật)
mà MC=MB ( M là trung điểm của BC)
=> AK=MB
Ta có: AK//MC( 2 cạnh đối trong hình chữ nhật)
mà MC và MB là 2 tia đối
=> AK//MB
Tứ giác AKBM có: AK=MB
AK//MB
=> AKBM là hình bình hành
c) Tứ giác ABEC có: M là trung điểm của đường chéo AE
M là trung điểm của đường chéo BC
=> ABEC là hình bình hành
mà AE⊥BC( cmt)
=> ABEC là hình thoi
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật