Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta\)ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí)
mà \(\widehat{B}=\widehat{C}\)
=> \(\widehat{A}+2\widehat{B}=180^0\)
=> \(\widehat{A}=180^0-2\widehat{B}\)
=> \(180^0-2\widehat{B}=80^0\)
=> \(2\widehat{B}=100^0\)
=> \(\widehat{B}=50^0\)
Do đó \(\widehat{B}=\widehat{C}=50^0\)
Ta có : BD = BA => \(\Delta\)ABD cân tại B => \(\widehat{BAD}=\widehat{BDA}\)
\(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{B}}{2}=\frac{180^0-50^0}{2}=65^0\)
=> \(\widehat{BAD}=65^0\)
CE = CA => \(\Delta\)ACE cân tại C => \(\widehat{CAE}=\widehat{CEA}\)
Do đó \(\widehat{CAE}=\widehat{CEA}=\frac{180^0-\widehat{C}}{2}=\frac{180^0-50^0}{2}=65^0\)
=> \(\widehat{CAE}=65^0\)
Xét \(\Delta\)DAE theo định lí tổng ba góc trong 1\(\Delta\))
=> \(\widehat{BAD}+\widehat{CAE}+\widehat{DAE}=180^0\)
=> \(65^0+65^0+\widehat{DAE}=180^0\)
=> \(\widehat{DAE}=180^0-130^0=50^0\)
Vậy \(\widehat{DAE}=50^0\)
+) Ta có:
(tổng ba góc trong 1 tam giác)
Lại có: tam giác ABC là tam giác cân tại A nên:
+)Xét tam giác ABD có BA= BD (giả thiết) nên tam giác ABD cân tại B.
Lại có; ( tổng ba góc trong 1 tam giác)
+) Tương tự, ta có tam giác AEC cân tại C ( vì CA =CE)
+) Xét tam giác ADE có:
( tổng ba góc trong tam giác)
Suy ra:
đừng tích ai nhá, tôi về mình giải cho, giờ mik phải đi học thêm
ΔABD cân tại B có = 50º nên = 70º
ΔACE cân tại C có = 50º nên = 70º