K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

 Xét ΔABE và ΔACF có:

^A : góc chung

 AB=AC(gt)

^ABE=^ACF(cmt)

=>ΔABE=ΔACF(g..c.g)

=> AE=AF

=>ΔAEF cân tại A

=> AFEˆ=180−Aˆ2AFE^=180−A^2               (1)

Có: ΔABC cân tại A(gt)

=> ABCˆ=180−Aˆ2ABC^=180−A^2              (2)

Từ (1)(2) suy ra:

^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị

=>FE//BC

Mà ^B=^C(gt)

=> tứ giác BFEC là ht cân

24 tháng 9 2021

a) Ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

Xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)Ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

Theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

Xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c) Tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

Tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

Ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

Từ (1)(2)=> tứ giác BFEC là hình thang cân

20 tháng 9 2021

\(a,\left\{{}\begin{matrix}\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC};\widehat{C_1}=\widehat{C_2}=\dfrac{1}{2}\widehat{ACB}\\\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân.tại.A\right)\end{matrix}\right.\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\\ \left\{{}\begin{matrix}\widehat{B_1}=\widehat{C_1}\\AB=AC\\\widehat{A}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta AFC\left(g.c.g\right)\Rightarrow AE=AF\\ \Rightarrow\Delta AEF.cân\)

\(b,\left\{{}\begin{matrix}AE=AF\\AB=AC\end{matrix}\right.\Rightarrow AB-AF=AC-AE\Rightarrow BF=CE\\ \left\{{}\begin{matrix}BF=CE\\\widehat{ABC}=\widehat{ACB}\\BC.chung\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(c.g.c\right)\)

\(c,\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{AFE}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BFCE\) là hthang

Mà \(\widehat{ABC}=\widehat{ACB}\) nên BFCE là hthang cân

A B C E F

Ta có: \(\Delta ABC\) cân tại A (gt)

mà BE, CF lần lượt là tia phân giác của \(\widehat{ABC}\)\(\widehat{ACB}\) (gt)

=> BE = CF

Xét \(\Delta ABE\)\(\Delta ACF\) có:

BE = CF (cmt)

\(\widehat{ABE}=\widehat{ACF}\) \(\left(\widehat{ABC}=\widehat{ACB}=2\widehat{ABE}=2\widehat{ACF}\right)\)

AB = AC (\(\Delta ABC\) cân tại A)

Do đó: \(\Delta ABE=\Delta ACF\left(c.g.c\right)\)

=> AE = AF (2 cạnh tương ứng)

=> \(\Delta AFE\) cân tại A

\(\Delta ABC\) cân tại A

nên \(\widehat{ABC}=\widehat{AFE}\)

mà chúng ở vị trí đồng vị

=> FE // BC (dấu hiệu nhận biết)

=> BFEC là hình thang

mà BE = CF

=> BFEC là hình thang cân

Ta có: EF // BC (cmt)

=> \(\widehat{EFC}=\widehat{FCB}\) (2 góc so le trong)

\(\widehat{FCB}=\widehat{ECF}\) (CF là tia phân giác \(\widehat{ECB}\))

=> \(\Delta FEC\) cân tại E (t/c tam giác cân)

=> FE = EC (Đ/N tam giác cân)

mà hình thang BFEC cân

=> BFEC là hình thang cân có đáy nhỏ bằng cạnh bên

29 tháng 6 2017

Hình thang cân

góc A là góc chung

AB=AC(giả thiết)

góc ABE= góc ACF(cmt)

=>tam giác ABE= tam giác ACF(c.g.c)

=>AE=AF

=>tam giác AEF cân tại A

=>AEF=180-A/2 (1)

có tam giác AEF cân tại A  (gt)                                  180 độ nhé

=>góc ABC=180-A/2    (2)

từ (1) và (2) nên ^AFE=^ABC 2 góc đòng vị

=>FE song song với BC

mà ^B=^C

=>tứ giác BFEC là ht cân

8 tháng 7 2018

 Tứ giác BFEC là hình thang cân có đáy nhỏ bằng cạnh bên