K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

Chú ý H là trực tâm tam giác ABC, từ đó AH vừa là đường cao vừa là đường phân giác

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

CB chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

b: Xét ΔHBC có góc HCB=góc HBC

nên ΔHBC cân tại H

c: Xet ΔABH và ΔACH có

AB=AC

BH=CH

AH chung

=>ΔABH=ΔACH

=>góc BAH=góc CAH

=>AH làphân giác của góc BAC

17 tháng 9 2023

a) Tam giác ABC cân tại nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).

Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ  - 70^\circ  - 70^\circ  = 40^\circ \).

b) Xét tam giác vuông ADB và tam giác vuông AEC có:

     AB = AC (tam giác ABC cân);

     \(\widehat A\) chung.

Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).

c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.

Xét hai tam giác vuông AFB và AFC có:

     AB = AC (tam giác ABC cân);

     AF chung.

Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).

Vậy tia AH là tia phân giác của góc BAC.

7 tháng 5 2017

Bạn tự vẽ hình ik nha

a. Xét tam giác ABD và tam giác ACE có:

góc D = góc E = 90* (gt)

AB = AC (gt)

góc A chung

=> tg ABD = tg ACE (c. huyền-g. nhọn)

b. Vì H là giao điểm của 2 dường cao BD và CE 

Nên AH cũng là đường cao cùa tg ABC hay AH vuông góc BC

Do tg ABC là tam giác cân => AI là đường cao đồng thời cũng là dường trung tuyến => BI = CI => I là trung điểm của BC

c.Ta có: góc ACE = góc ABD (doc tg ABD = tg ACE)

 và góc ABC = góc ACB

=> góc DBC = góc ECB

 Ta có: BD vuông góc AC (gt)

              CF vuông góc AC (gt)

=>          CF song song BD (2 dường thẳng cùng vuông góc với 1 dường thẳng)

=>      góc DBC = góc BCF ( so le trong)

Mà góc DBC = góc ECB

=> góc ECB = góc BCF

=> BC lá tia phân giác của góc ECF

18 tháng 5 2021

hellooooooooooooooooooooo

3 tháng 7 2018

a, Xét ∆ ABD và ∆ ACE có:

Góc D = góc E = 90°

AB = AC (∆ ABC cân)

Góc BAC chung

➡️∆ ABD = ∆ ACE (ch-gn)

➡️AD = AE (2 cạnh t/ư)

b,  ✳️C/m AH là tia phân giác của góc BAC

Xét∆ ABC cân tại A có: 

BD vuông góc với AC

CE vuông góc với AB

H là giao điểm của BD và CE 

➡️H là trực tâm ∆ ABC

➡️AH vuông góc với BC

mà ∆ ABC cân tại A

➡️AH là đg cao đồng thời là đg phân giác

➡️AH là p/g góc BAC(đpcm)

 ✳️C/m AH là đg trung trực của ED

Xét ∆ AED cân tại A (AD = AE)

➡️AH là đg phân giác đồng thời là đg trung trực

 ➡️AH là đg trung trực của ED (đpcm)

c, Xét ∆ AEH và ∆ ADH có:

AE = AD (cmt)

Góc BAH = góc CAH (cmt)

AH chung

 ➡️∆ AEH = ∆ ADH (c.g.c)

➡️HE = HD (2 cạnh t/ư)

Xét ∆ CDH vuông tại D

➡️CH > HD

mà HE = HD (cmt)

➡️CH > HE 

Còn câu d để mk nghĩ đã nhé

4 tháng 7 2018

Câu d nè bn.

d, Vì AH là đg trung trực của EF và AH vuông góc với BC

➡️ED // BC (quan hệ từ vuông góc đến song song)

Ta có: góc FED = góc DBC (2 góc có 2 cạnh tương ứng song song)

Gọi AH giao BC tại M

Xét ∆ ABC cân tại A

➡️AH là đg cao đồng thời là trung tuyến

HM là trung tuyến của BC

Xét ∆ IBC có HM là đg cao đồng thời là trung tuyến

➡️∆ IBC cân tại I

 ➡️Góc DBC = góc ECB

Mà góc ECB = góc DEC (2 góc so le trong)

➡️Góc DEC = góc DBC 

mà góc DBC = góc FED (cmt)

➡️Góc FED = góc DEC

➡️ED là tia phân giác góc FEC

Xét ∆ FEC có: CI là phân giác góc DCE (gt)

                         EI là phân giác góc FEC (cmt)

                         CI và EI giao nhau tại I

 ➡️I là tâm đg tròn nội tiếp∆ FEC

➡️FI là phân giác góc CFE

mà góc CFE vuông (EF // BD, góc BDC = 90°)

➡️Góc EFI = góc CFI = 90° ÷ 2 = 45°

Vậy góc EFI = 45°

Hok tốt nhé~

15 tháng 5 2019

bạn cm AM là trung tuyến 

đồng thời dựa vào tam giác ABC cân và AH là đường cao ta cm được AH là trung tuyến 

suy ra AM trùng với AH 

vậy A,H,M thẳng hàng

15 tháng 5 2019

Hình vẽ:

ED3YjYS.png

21 tháng 4 2022

 

Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.

Suy ra: AD ⊥ BC

Ta có: CH ⊥ AB (gt)

Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC

Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.

Vậy BD ⊥ AC.

18 tháng 5 2022

a/ Xét \(\Delta ABD\left(D=1v\right)\) và \(\Delta ACE\left(E=1v\right)\) có:

           góc A chung (gt)

           AB = AC (\(\Delta ABC\) cân tại A)

   => \(\Delta ABD=\Delta ACE\) (ch-gn)

b/ Xét\(\Delta ABK\left(K=1v\right)\) và \(\Delta ACK\left(K=1v\right)\) có:

          AB = AC (\(\Delta ABC\) cân tại A)

          AK chung (gt) 

  => \(\Delta ABK=\Delta ACK\) (ch-cgv)

  => góc BAK = góc CAK (hai góc tương ứng)

 => AK là tia phân giác của góc BAC

18 tháng 5 2022

giải hộ mik nhanh nhất có thể ạ