K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.

Vì tam giác ABC cân tại A nên AH là đường trung trực của BC. Suy ra AD là đường trung trực của BC.

Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC.

Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc (ACD) = 90 °

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: C H 2  = HA.HD

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 8 2019

A B C D 4 6 H O

Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC 

Vì tam giác ABC cân tại A nên AHlà đường trung trực của BC . Nên  AD là đường trung trực của BC . 

Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC 

Tam giác ACD nội tiếp trong (O )  có AD là đường khính suy ra \(\widehat{ACD=90}\)độ 

Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :

\(CH^2=HA.HD\)

\(\Rightarrow\)\(HD=\frac{CH^2}{HA}=\frac{\left(\frac{BC}{2}\right)^2}{HA}=\frac{\left(\frac{12}{2}^2\right)}{4}=\frac{6^2}{4}=9cm\)

Ta có \(AD=AH+HD=4+9=13\left(cm\right)\)

Vậy bán kính của đường tròn (O )  là :

 \(R=\frac{AD}{2}=\frac{13}{2}=6,5\left(cm\right)\)

Chúc bạn học tốt !!!

17 tháng 8 2016

(Hình)

Diện tích tam giác ABC là:

SABC = 1/2 . AH . BC = 1/2 . 4 . 12 = 24 (cm2)

Vì tam giác ABC cân tại A nên đường cao AH là trung tuyến BC

Nên : BH= HC= 1/2. BC= 1/2 . 12 = 6 (cm)

Trong tam giác AHB:

Áp dụng ĐL pi-ta-go:

 AB2 = AH2 + BH2

AB2 = 42 + 62

AB= \(2\sqrt{13}\) (cm)

Vì tam giác ABC cân tại A nên : AB = AC = \(2\sqrt{13}\) (cm)

Ta có : SABC =\(\frac{AB\cdot AC\cdot BC}{4R}\)   (R là bán kính đường tòn ngoại tiếp tam giác ABC)

<=> \(24=\frac{2\sqrt{13}.2\sqrt{13}.12}{4R}\)

<=> R= \(\frac{13}{2}\) (cm)

OK


 

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

NV
6 tháng 8 2021

ABC cân tại A nên H đồng thời là trung điểm BC

\(\Rightarrow BH=CH=6\left(cm\right)\)

Trong tam giác vuông ABH:

\(AB=\sqrt{AH^2+BH^2}=2\sqrt{13}\)

Gọi D là trung điểm AB, qua D kẻ đường trung trực AB, kéo dài cắt AH tại O

\(\Rightarrow\) O là tâm đường tròn ngoại tiếp tam giác \(\Rightarrow OA=R\)

\(AD=\dfrac{1}{2}AB=\sqrt{13}\)

Trong tam giác vuông ABH: \(cos\widehat{BAH}=\dfrac{AH}{AB}\)

Trong tam giác vuông ADO: \(cos\widehat{BAH}=\dfrac{AD}{AO}\)

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{AO}\Rightarrow R=AO=\dfrac{AB.AD}{AH}=6,5\left(cm\right)\)

NV
6 tháng 8 2021

undefined

31 tháng 7 2019

chúng cơm chúng à

Vì ΔABC vuông tại A nên ΔABC nội tiếp đường tròn đường kính BC

hay R=BC/2

\(AH^2=HB\cdot HC\)

=>HC=144:8=18(cm)

=>BC=26(cm)

=>R=13(cm)