K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AM là đường phân giác

nen AM là đường cao

b: Xét ΔNBC có

BA là đường trung tuyến

BA=NC/2

DO đó: ΔNBC vuông tại B

=>NB//AM

Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK

Xét \(\Delta AMN\)và \(\Delta KMB\)\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)

\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)

\(\Rightarrow AN=BK=AM\)

mà \(AB>AM\Rightarrow AB>BK\)

\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)

\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)

8 tháng 2 2020

A B C M N D

Trên tia đồi  của tia MA lấy điểm D sao cho: MA=MD

Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)

mặt khác:

\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

24 tháng 12 2020

a) Xét △MIA và △BIH có 

MI=BI( giả thiết)

góc MIA =góc BIH(2 góc đối đỉnh)

IA=IH(Vì I là trung điểm của AH)

=>  △MIA = △BIH(c-g-c)

=>góc IMA=góc IBH (2 góc tương ứng)

hay góc BMA=góc MBH mà 2 góc này là 2 góc so le trong của đường thẳng MB cắt MA và BH

=>MA//BH

bạn tự làm câu b,c nhé

8 tháng 5 2022

bài toán vô lí quá nếu mà cân tại A thì AB = AC chứ đáng lẽ ra là vuông tại A chứ:

 

8 tháng 5 2022

nếu là vuông tại A thì có:

a.Xét tam giác ABC vuông tại A:

BC2=AB2+AC2(định lí pytago)

hay   BC2=62+82

        BC2=36+64

        BC2= \(\sqrt{100}\)

        BC=10(cm)

vậy BC=10cm

Xét ΔABC và ΔACM có:

AB=AM(gt)

AC chung

^CAB=^CAM=90o

=>ΔABC=ΔACM(trường hợp gì tự biết)   :)

 

8 tháng 5 2022

Giúp với tớ cần gấp

 

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

c: Ta có: ΔABH=ΔACK

nên AH=AK

d: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có 

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

mà \(\widehat{HBM}=\widehat{OBC}\)

và \(\widehat{KCN}=\widehat{OCB}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O