Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
a, Vì tam giác ABC cân tại A
=>AB=AC
Xét tam giác DAB và tam giác EAC có:
AB=AC (cmt)
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}\) \(=90^0\)
=>Tam giác DAB=Tam giác EAC (c.h-g.n)
=>AE=AD (2 cạnh tương ứng)
=>Tam giác ADE là tam giác cân tại A
b, Xét tam giác AHE và tam giác AHD có:
AH cạnh chung
\(\widehat{AEH}=\widehat{ADH}\left(=90^0\right)\)
AE=AD (cmt)
=>Tam giác AHE=tam giác AHD (c.h-c.g.v)
=>\(\widehat{EAH}=\widehat{DAH}\)
=>AH là tia phân giác của \(\widehat{BAC}\)
vì ME//AB=>GÓC EMA=EAB(so le trong)
vì AC //MF => EA//MF=>GÓC EAM = AMF( so le trong)
Xét tam giác EAM và AMF có : AM là cạnh chung , góc EMA=EAB , EAM =AMF => tam giác EAM=FMA(g-c-g)
=>góc EMA=AMF(2 góc tương ứng), mà MA nàm giữa ME VÀ MF
=>AM là phân giác của EMF
ban tu ve hinh nha:
xet tam giacAMB va tam giaAMC
AB=AC
AM chung
M1=m2
suy ra hai tam giacAmb va amc bang nhau.
Xét tam giác ABC cân tại A có AM là phân giác
=> đồng thời AM là đường trung tuyến => BM = MC
Xét tam giác MDB và tam giác MEC ta có :
^MBD = ^MCE ( gt )
BM = MC ( cmt )
^MDA = ^MEC = 900
Vậy tam giác MDB = tam giác MEC ( ch - gv )
Xét ΔMDB vuông tại D và ΔMEC vuông tại E có
MB=MC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMDB=ΔMEC