Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) vì tam giác ABC cân A=> AB=AC
xét tam giác ABM và tam giác ACM có
A1=A2(gt)
AB=AC(cmt)
AM chung
=> tam giác ABM= tam giác ACM(cgc)
=> AMB=AMC(hai góc tương ứng)
mà AMB+AMC=180 độ( kề bù)
=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC
b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)
=> M là trung điểm BC=> AM là trung tuyến
BQ là trung tuyến
mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC
c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm
ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12
vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm
d) vì MD//AC=> CAM=AMD( so le trong)
mà CAM=BAM(gt)
=> BAM=AMD=> tam giác AMD cân D=> AD=DM
vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM
vì AMD+DMB=AMB=> DMB=90 độ-AMD
mà AMD=BAM (cmt)
=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến
mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng
a,XétΔABM và ΔACM có :
^AMB=^AMC(=90o)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:ΔABM= ΔACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=BC2 =242 = 12
Δ AMB vuông tại M có :
AM2+BM2=AB2 ( đl Pytago)
=>AM2=AB2−BM2
= 202−122
= 162
=>AM=16
A) XÉT \(\Delta ABM\)VÀ\(\Delta ACM\)CÓ
\(AB=AC\left(GT\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
AM LÀ CẠNH CHUNG
=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)
TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO
=> AM LÀ ĐƯỜNG CAO CỦA \(\Delta ABC\)
\(\Rightarrow AM\perp BC\)
B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN
=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ABC\)
MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta ABC\)
HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G
\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=4^2+3^2=25\)
hay AB=5(cm)
Vậy: AB=5cm
sao nhiều bạn biết làm mà không giúp bạn này z
chắc bạn ấy đang cần gấp lắm á, giúp bạn ấy di nào!!!
a) Xét ∆ABD và ∆ACD, ta có
AB=AC(GT)
<ABD=<ACD=90°
AD cạnh chung
⟹ ∆ABD=∆ACD(c.h-cgv) ⟹<BAD=<CAD( 2 góc tương ứng)
Xét ∆ABC và ∆ACD, ta có:
AB=AC(GT)
<BAD=<CAD(CMT)
AC cạnh chung
⟹ ∆ABC=∆ACD (c.g.c)
b) Ta có : BD=DC(Vì ∆ABD=∆ACD (CM ở a)) <1>
BC=DC( Vì ∆ABC=∆ACD(CM ở a)) <2>
Từ <1> và <2>
⟹ BD=DC=BC
⟹ ∆BDC là tam giác đều
c) Ta có: AD>BD(Vì AD là cạnh huyền tương ứng của tam giác vuông ABD)
BC=BD( Vì ∆BDC là tam giác đều (CM ở b))⟹2BC>BD
⟹ 2BC=+AD>AB+BD
a) xét tam giác ABM và tam giác ACM ta có
AM=AM ( cạnh chung)
AB=AC( tam giác ABC cân tại A)
goc MAB = góc MAC ( AM là tia p.g góc BAC)
->tam giac ABM= tam giac ACM (c-g-c)
b)Xét tam giac ABC cân tại A ta có
AM la đường phân giác (gt)
-> AM là đường cao
-> AM vuông góc BC
mà NC vuông góc BC (gt)
nên AM//NC
ta có
góc BAM = goc ANC (2 góc đồng vị và AM//CN)
góc CAM=góc ACN (2 góc sole trong và AM//CN)
góc BAM = góc CAM ( tam giac ABM= tam giac ACM)
-> goc ANC = góc ACN
=> tam giac ANC cân tại A
c)ta có
AB=AC ( tam giac ABC cân tại A)
AN=AC ( tam giac ANC cân tại A)
-> AB=AN
-> A là trung điểm BN
Xét tam giác ABC cân tại A ta có
AM là tia phấn giác góc BAC (gt)
-> AM là đường trung tuyến
-> M là trung điểm BC
Xét tam giac BCN ta có
CA là đường trung tuyến ( A là trung điểm BN)
NM là đường trung tuyến ( M là trung điểm BC)
CA cắt NM tại G (gt)
-> G là trọng tâm tam giac BCN
d)ta có MC=BC:2 ( M là trung điểm BC)
MC=18:2=9 (cm)
Xét tam giác BNC ta có
NM là đường trung tuyến (M là trung điểm BC)
G là trọng tâm (cmc)
-> MG=1/3 MN->MN=3MG=3.5=15
Xét tam giác MNC vuông tại C ta có
MN2=NC2+MC2 ( định lý pitago)
152=NC2+92
NC2=152-92=144
NC=12