K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Sai đề bài rồi bn.

A B D E C F

a) Xét \(\Delta DEC\)và \(\Delta ABC\)có:

\(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{C}\)là góc chung

\(\Rightarrow\Delta DEC~\Delta ABC\left(g.g\right)\)

b) Xét \(\Delta BFA\)và \(\Delta CFB\)có:

\(\widehat{F}\)là góc chung

\(\widehat{FAB}=\widehat{FBC}\left(=90^0\right)\)

\(\Rightarrow\Delta BFA~\Delta CFB\left(g.g\right)\)

\(\Rightarrow\frac{BF}{CF}=\frac{FA}{BF}\Leftrightarrow BF.BF=FA.CF\)

\(\Rightarrow BF^2=FA.FC\left(đpcm\right)\)

...

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có

góc B chung

=>ΔBME đồng dạng với ΔBAC

b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có

góc MBE=góc MNC

=>ΔMBE đồng dạng với ΔMNC

=>MB/MN=ME/MC

=>MN*ME=MB*MC=1/4BC^2

=>BC^2=4*MN*ME

14 tháng 4 2023

a) xét △ABC và △MBE có : 

Góc BAC  = Góc BME  = 90 (Gt)

Góc B chung

⇒△ABC ∼ △MBE (g.g) (1)

b)Xét △ABC và △MCN có:

Góc BAC  = góc NMC = 90 (Gt)

⇒△ABC ∼ △MBE (g.g) (2)

Ta có M là tđ của BC ⇒ MB =MC =1/2 BC

Từ (1) và (2) ⇒△MNC ∼ △MBE

⇒EM/MC = MN/BM

⇔ EM/MN = 1/2BC : 1/2BC

⇔BC2 =EM/MN : 4

⇔BC2 = EM/4MN

 

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;