K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

A B C M N P I D E Q

*) Bài toán thuận:

Qua N kẻ đường thẳng song song với AB cắt cạnh BC ở điểm P, nối PM.

Gọi D; E lần lượt là trung điểm của AB và AC. I là trg điểm MN.

Ta có: NP // AB => ^NPC=^ABC (Đồng vị). Mà ^ABC = ^ACB => ^NPC = ^ACB = ^NCP

=> \(\Delta\)PNC cân tại N => CN=PN. Lại có: AM=CN => AM=PN

Xét tứ giác AMPN:  AM=PN; AM // PN => Tứ giác AMPN là hình bình hành

Thấy I là trung điểm của đường chéo MN => I cũng là trung điểm của AP.

Xét \(\Delta\)PAC: I và E lần lượt là trg điểm của AP và AC => EI là đường trung bình \(\Delta\)PAC

=> IE // PC hay IE // BC. Tương tự ID//BC => D;I;E thẳng hàng (Tiên đề Ơ-clit)

=> I nằm trên đường trung bình DE của \(\Delta\)ABC cố định.

*) Bài toán đảo: Cho tam giác ABC cân A có M và N thuộc AB và AC sao cho AM=CN. MN cắt đường trung bình DE của tam giác ABC ở điểm I. CMR I là trung điểm của MN ?

Qua M kẻ đường thẳng // AC cắt DE tại Q .

Ta có: AB=AC => 1/AAB=1/2AC => AD=CE. Mà AM=CN => AD-AM = CE - CN => DM=EN

Dễ thấy \(\Delta\)DMQ cân tại M => DM=QM => QM=EN.

Xét \(\Delta\)MIQ và \(\Delta\)NIE: ^IMQ=^INE; ^IQM=^IEN (Do MQ//AC); QM=EN

=> \(\Delta\)MIQ=\(\Delta\)NIE (g.c.g) => IM=IN (2 cạnh tương ứng) => I là trung điểm MN (đpcm).

*) Vậy khi 2 điểm M và N di động trên AB và AC sao cho AM=CN thì trung điểm của MN luôn chạy trên đường trung bình của tam giác ABC.

11 tháng 6 2019

Cậu tự vẽ hình nhé

a, kẻ MK vuông BC, NG vuông BC

Tam g ABC cân => g ABC= g ACB 

Lại có g ACB = g GCN (dd)

=> g GCN = g ABC=g MBK

Xét tg MBK và tg NCG 

g MKB= g NGC =90° 

g MBK = g NCG (cmt)

MB= CN(gt)

=> tg MBK= tg NCG ( ch-gn)

=> MK=NG (2 cạnh tương ứng)

Vì MK vuông BC, NG vuông BC => NG// MK 

=> g GNM = g KMN ( so le trong )

Xét tg MKD VÀ TG NGD

g MKD = g DGN = 90°

g KMD = gDNG ( cmt)

Mk= GN (cmt)

=> tg MKD = tg NGD (_cgv-gn)

=> MD= ND (2 ctu)

=> D là td MN ( dpcm)

11 tháng 6 2019

Xét tam giác cân ABC , AH là đường cao => AH là trung trực 

Lại có E thuộc AH => EC= EB 

Xét tg ABE và tg ACE

AB=AC (tg ABC cân)

BE= EC (cmt)

AE cạnh chung 

=> tg ABE = tg ACE (ccc)

=> g ABE = g ACE ( 2 góc tương ứng)(1)

Lại có DE là trung trực MN => ME = NE

Xét tg MBE và tg NCE

MB = NC ( gt)

ME = NE (cmt)

BE = CE (cmt)

=> tg MBE = tg NCE (ccc)

=> g ECN = g EBM (2 góc t u ) (2)

Từ 1), 2) => g ECA = g ECN 

Lại có 2 góc này bù nhau

=>g ACE= 90°= g ABE

Xét tg ABE vuông

+ theo đl pytago:

=> AE = √( ab2+bE2)= √( 62+4,52)= 7,5 (cmcm)

+ BH là đcao, theo hệ thức lượng trong tg vuông

=>+ AB2= AH.AE => AH= 62:7,5=4,8 (cmcm)

+ 1/(BH2)= 1/(AB2)+1/(BE2) => BH = √(1:( (1/62)+(1/4,52))= 3,6(ccmcm)

=> BC= 3,6.2= 7,2 (cm)

=> dt tg ABC có đcao AH là 7,2.4,8.1/2= 28,08(cm2)

Vậy S tg ABC = 28,08 cm2