Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABE và tam giác HBE có
AB=HB(gt)
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
BE chung
\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ
\(\Rightarrow\)EH vuông góc vs BC
a) Vì BE là tia phân giác của tam giác ABC
=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)
* Xét tam giác ABE và tam giác HBE có :
+ )BA = BH ( gt)
+) \(\widehat{ABE}=\widehat{EBH}\) (cmt)
+)BE chung
=> tam giác ABE = tam giác HBE ( c-g-c)
-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )
Mà \(\widehat{BAE}=90^0\)( \(\widehat{BAC}=90^0\))
-> \(\widehat{BHE}=90^0\)
=> BH vuông góc EH hay BC vuông góc EH ( đpcm)
b) Vì tam giác ABE = tam giác HBE (cmt)
=> AE = EH ( 2 cạnh tương ứng )
* Có : AE = EH ( cmt)
=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)
BA = BH ( gt )
=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )
Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )
c) Vì tam giác ABC có \(\widehat{A}\)= \(90^0\) ( gt)
=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )
=>\(\widehat{EAK}=90^0\)
Vì EH vuông góc AC ( cmt)
=> \(\widehat{EHC}=90^0\)
Xét tam giác AEK và tam giác HEC có
AE = EH (cmt)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)
=> tam giác AEK = tam giác HEC ( g-c-g)
=> EK = EC ( 2 cạnh tương ứng)
d) Có : BA = BH ( gt 0
=> tam giác BAH cân tại B
=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)
Vì tam giác AEK = tam giác HEC ( cmt )
=> AK = HC ( 2 cạnh tương ứng)
Có: AK = BA + AK
BC = BH + HC
Mà BA = BH ( gt )
AK = HC ( cmt)
=> BK = BC
=> Tam giác BKC cân tại B
=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )
Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)
Mà 2 góc ở vị trí đồng vị
=> AH // BC ( đpcm)
e) Có : Tam giác BKC cân tại B
M là trung điểm BC
=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC
Có BK là đường phân giác của tam giác BKC (cmt)
=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)
Mà BE cũng là đường phân giác của \(\widehat{BAH}\)
=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)
a) Bạn ghi câu a) không rõ ràng nên mình thay thế bằng ý kiến của mình nhé !
CMR : \(\Delta ABE=\Delta HBE\)
Xét \(\Delta ABE,\Delta HBE\) có :
\(BA=BH\left(gt\right)\)
\(\widehat{ABE}=\widehat{HBE}\) (BE là tia phân giác của \(\widehat{B}\) )
\(BE:chung\)
=> \(\Delta ABE=\Delta HBE\left(c.g.c\right)\)
b) Gọi \(AH\cap BE=\left\{O\right\};O\in BE\)
Xét \(\Delta ABO,\Delta HBO\) có :
\(AB=BH\left(gt\right)\)
\(\widehat{ABO}=\widehat{HBO}\) (BE là tia phân giác của \(\widehat{B}\) ; \(O\in BE\))
AO : Chung
=> \(\Delta ABO=\Delta HBO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{BOH}\) (2 góc tương ứng)
Mà : \(\widehat{BOA}+\widehat{BOH}=180^o\left(Kềbù\right)\)
=> \(\widehat{BOA}=\widehat{BOH}=\dfrac{180^o}{2}=90^o\)
=> \(BO\perp AH\)
Hay : \(BE\perp AH\)
c) Ta chứng minh được : \(\Delta BKE=\Delta BCE\)
Suy ra : \(EK=EC\) (2 cạnh tương ứng)
d) Xét \(\Delta ABC\) có :
BE là tia phân giác của \(\widehat{ABC}\) (1)
Xét \(\Delta KEM,\Delta CEM\) có :
\(EK=EC\left(cmt\right)\)
\(EM:chung\)
\(KM=CM\) (M là trung điểm của KC)
=> \(\Delta KEM=\Delta CEM\left(c.c.c\right)\)
=> \(\widehat{MEK}=\widehat{MEC}\) (2 góc tương ứng)
=> EM là tia phân giác của \(\widehat{KEC}\) (2)
Từ (1) và (2) => \(BE\equiv ME\)
=> B, E, M thẳng hàng
=> đpcm.
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
Suy ra: BD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=EF
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
c: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của DF
nên M là trung điểm của BE
hay B,M,E thẳng hàng
Chứng minh được: ∆ A B M = ∆ A C M (c.c.c).
Từ đó, suy ra AM là đường trung trực của BC.
Theo tính chất ba đường trung trực của tam giác, ta suy ra điểm E thuộc đường trung trực của BC.
Vậy ba điểm A, E, M thẳng hàng.