K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ IK,IH,IE lần lượt vuông góc BC,AB,AC

Xét ΔBHI vuông tại H và ΔBKI vuông tại K có

BI chung

góc HBI=góc KBI

=>ΔBHI=ΔBKI

=>IH=IK

Xét ΔCKI vuông tại K và ΔCEI vuông tại E có

CI chung

góc KCI=góc ECI

=>ΔCKI=ΔCEI

=>IK=IE

=>IH=IE

Xét ΔAHI vuông tại H và ΔAEI vuông tại E có

AI chung

IH=IE

=>ΔAHI=ΔAEI

=>góc HAI=góc EAI

=>AI là phân giác của góc BAC

15 tháng 11 2023

vẽ hình nữa nha

17 tháng 3 2018

10 tháng 3 2022

Xét tam giác ABC vuông tại A:

BI; IC là đường phân giác (gt).

BI cắt CI tại I (gt).

\(\Rightarrow\) AI là tia phân giác góc BAC.

19 tháng 3 2022

Tam giác ABC có BI; CI là các đường phân giác giao nhau tại I

=> I là tâm đường tròn ngoại tiếp

=> AI là phân giác

 

1 tháng 3 2021

Xét tam giác ABC có:

IB là phân giác `hat{B}`

IC là phân giác `hat{C}`

`=>` I là giao điểm 2 đường pg.

`=>` AI là phân giác `hat{A}`

Kẻ KD vuông góc AB, KE vuông góc BC, KF vuông góc AC

Xét ΔADK vuông tại D và ΔAFK vuông tại F có

AK chug

góc DAK=góc FAK

=>ΔADK=ΔAFK

=>KD=KF

Xét ΔCFK vuông tại F và ΔCEK vuông tại E có

CK chung

góc FCK=góc ECK

=>ΔCFK=ΔCEK

=>FK=EK=DK

=>K nằm trên tia phân giác của góc ABC

=>BK là phân giác của góc ABC

Bạn đổi điểm K thành điểm M là xong nha

Kẻ IG,IK,IH lần lượt vuông góc với AB,BC,AC

Kẻ MO,MD,ME lần lượt vuông góc với AB,BC,AC

Xét ΔBKI vuông tại K và ΔBGI vuông tại G có

BI chung

góc KBI=góc GBI

Do đó: ΔBKI=ΔBGI

Suy ra: IK=IG(1)

Xét ΔCKI vuông tại K và ΔCHI vuông tại H có

CI chung

góc KCI=góc HCI

Do dó: ΔCKI=ΔCHI

Suy ra: IK=IH(2)

Từ (1) và (2) suy ra IG=IH

mà I nằm trong ΔABC và IG,IH là các đường cao ứng với các cạnh AB,AC

nên AI là phân giác của góc BAC(3)

Xét ΔBOM vuông tại O và ΔBDM vuông tại D có

BM chung

góc OBM=góc DBM

Do đó: ΔBOM=ΔBDM

Suy ra: MO=MD(4)

Xét ΔMDC vuông tại D và ΔMEC vuông tại E có

CM chung

góc DCM=góc ECM

Do đó: ΔMDC=ΔMEC

Suy ra: MD=ME(5)

Từ (4) và (5) suy ra MO=ME

mà M nằm ngoài ΔABC và MO,ME là các đường cao ứng với các cạnh AB,AC

nên AM là phân giác của góc BAC(6)

Từ (3) và (6) suy ra A,I,M thẳng hàng

4 tháng 9 2019

Kẻ IH ⊥ AB, IJ ⊥ BC, IG ⊥ AC, KD ⊥ AB, KE ⊥ AC, KF ⊥ BC

Vì I nằm trên tia phân giác của ∠(BAC) nên IH = IG (tính chất tia phân giác)

Vì I nằm trên tia phân giác của ∠(BCA) nên IJ = IG (tính chất tia phân giác)

Suy ra: IH = IJ

Do đó I nằm trên tia phân giác của ∠(ABC) (1)

Vì K nằm trên tia phân giác của ∠(DAC) nên KD = KE (tính chất tia phân giác)

Vì K nằm trên tia phân giác của ∠(ACF) nên KE = KF (tính chất tia phân giác)

Suy ra: KD = KF

Do đó K nằm trên tia phân giác của ∠(ABC) (2)

Từ (1) và (2) suy ra: B, I, K thẳng hàng.

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

Kẻ $KM, KT, KN$ lần lượt vuông góc với $AB, AC, BC$.

Vì $K$ thuộc tia phân giác $\widehat{MAC}$ nên $KM=KT$ (tính chất quen thuộc)

Vì $K$ thuộc tia phân giác $\widheat{ACN}$ nên $KN=KT$ 

$\Rightarrow KM=KN$ 

$\Rightarrow K$ thuộc tia phân giác $\widehat{MBN}$ hay $\widehat{ABC}$

Do đó $BI, BK$ cùng là tia phân giác $\widehat{ABC}$

$\Rightarrow B,I,K$ thẳng hàng

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Hình vẽ: