Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ trọng tâm là:
x=(1+2+0)/3=1 và y=(3+1+3)/3=7/3
c: \(d\left(A;d\right)=\dfrac{\left|1\cdot1+3\cdot\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)
a: Phương trình tổng quát là:
3(x-1)+1(y+3)=0
=>3x-3+y+3=0
=>3x+y=0
b: vecto AB=(-1;4)
Phương trình tham số của AB là:
\(\left\{{}\begin{matrix}x=1-t\\y=-3+4t\end{matrix}\right.\)
c: \(d\left(B;d\right)=\dfrac{\left|0\cdot3+1\cdot1\right|}{\sqrt{3^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
a.
\(\overrightarrow{BC}=\left(2;-3\right)\Rightarrow\) đường thẳng BC nhận (3;2) là 1 vtpt
Phương trình BC:
\(3\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow3x+2y-12=0\)
b.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(\dfrac{7}{3};\dfrac{4}{3}\right)\)
(C) tiếp xúc BC \(\Leftrightarrow d\left(G;BC\right)=R\)
\(\Rightarrow R=\dfrac{\left|3.\dfrac{7}{3}+2.\dfrac{4}{3}-12\right|}{\sqrt{3^2+2^2}}=\dfrac{7\sqrt{13}}{39}\)
Phương trình: \(\left(x-\dfrac{7}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=\dfrac{49}{117}\)
5:
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3
=>a=-4 và b=11
=>y=-4x+11
4:
vecto BC=(1;-1)
=>AH có VTPT là (1;-1)
Phương trình AH là:
1(x-1)+(-1)(y+3)=0
=>x-1-y-3=0
=>x-y-4=0
a, \(\overrightarrow{AC}=\left(3;5\right)\)
Phương trình tham số đường thẳng AC: \(\left\{{}\begin{matrix}x=-1+3t\\y=-1+5t\end{matrix}\right.\)
b, Gọi I là trung điểm của BC
\(\Rightarrow I=\left(\dfrac{-1+2}{2};\dfrac{-1+4}{2}\right)=\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
Phương trình đường thẳng BC là \(5x+y-14=0\)
Trung trực BC vuông góc với BC và đi qua trung điểm I có phương trình: \(x-5y+5=0\)
c, Phương trình đường thẳng AC: \(5x-3y+2=0\)
Đường thẳng BD đi qua B vuông góc với AC có phương trình: \(3x+5y-4=0\)
Gọi E là giao điểm của BD và AC
E có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-4=0\\5x-3y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{17}\\y=\dfrac{13}{17}\end{matrix}\right.\Rightarrow E=\left(\dfrac{1}{17};\dfrac{13}{17}\right)\)
\(\Rightarrow D=\left(\dfrac{2}{17}-3;\dfrac{26}{17}+1\right)=\left(-\dfrac{49}{17};\dfrac{43}{17}\right)\)
a: \(\overrightarrow{AB}=\left(-11;11\right);\overrightarrow{AC}=\left(-2;6\right)\)
Vì -11/-2<>11/6
nên A,B,C thẳng hàng
ABCD là hình bình hành
=>vecto DC=vecto AB
=>5-x=-11 và 4-y=11
=>x=16 và y=-7
b: \(\overrightarrow{BH}=\left(x+4;y-9\right)\); vecto BC=(9;-5); vecto AH=(x-7;y+2)
Theo đề, ta có:
(x+4)/9=(y-9)/-5 và 9(x-7)+(-5)(y+2)=0
=>-5x-20=9y-81 và 9x-63-5y-10=0
=>-5x-9y=-61 và 9x-5y=73
=>x=481/53; y=92/53
c: Vì (d') vuông góc (d) nên (d'): 4x+3y+c=0
Thay x=-2 và y=3 vào (d'), ta được:
c+4*(-2)+3*3=0
=>c=-1
a: vecto BC=(1;-3)
=>VTPT là (3;1)
Phương trình BC là:
3(x-2)+y-2=0
=>3x-6+y-2=0
=>3x+y-8=0
b: Phương trình AH nhận vecto BC làm VTPT
=>Phương trình AH là:
1(x-1)+(-3)*(y-1)=0
=>x-1-3y+3=0
=>x-3y+2=0
c: Tọa độ M là:
\(\left\{{}\begin{matrix}x=\dfrac{1+3}{2}=2\\y=\dfrac{1-1}{2}=0\end{matrix}\right.\)
M(2;0); B(2;2)
vecto BM=(0;-2)
=>VTPT là (2;0)
Phương trình BM là:
2(x-2)+0(y-0)=0
=>2x-4=0
=>x=2
a) `\vec(BC) (1;2) = \vecv => \vecn (2;-1)`
Đường thẳng `BC` có: `\vecn (2;-1); B(1;3)`
`=>` PT của `d\ : 2(x-1)-1(y-3)=0<=>2x-y+1=0`
b) `|BC| = \sqrt((2-1)^2+(5-3)^2) = \sqrt5`
`|AB|=\sqrt5`
`|AC|=4`