Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go: Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
Áp dụng định lý 2 đường trung bình của tam giác: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy
Lời giải chi tiết:
Áp dụng định lí Py-ta-go cho ΔABC vuông tại A ta có:
BC2=AB2+AC2⇒BC2=32+42=25⇒BC=5cm
Mà {AE=EB(gt)AF=FC(gt) ⇒EF là đường trung bình của ΔABC (định nghĩa)
⇒EF=12BC=12×5=2,5cm (tính chất đường trung bình của tam giác).
BD cắt AC tại O.
-△ABC=△CDA (g-c-g) \(\Rightarrow AB=DC\)
\(\Rightarrow\)△ABO=△CDO (g-c-g) \(\Rightarrow OA=OC\Rightarrow\)O là trung điểm AC.
-△ABC có: Trung tuyến BO cắt trung tuyến CE tại M.
\(\Rightarrow\)M là trọng tâm của △ABC mà F là trung điểm BC.
\(\Rightarrow\)A,M,F thẳng hàng.
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)
a: Xét ΔABC và ΔCDA có
\(\widehat{ACB}=\widehat{CAD}\)
AC chung
\(\widehat{CAB}=\widehat{ACD}\)
Do đó: ΔABC=ΔCDA
b: Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
Suy ra: Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
hay M là trung điểm của AC
c: Xét ΔAMI và ΔCMK có
\(\widehat{IAM}=\widehat{KCM}\)
AM=CM
\(\widehat{AMI}=\widehat{CMK}\)
Do đó: ΔAMI=ΔCMK
Suy ra: MI=MK
mà M,I,K thẳng hàng
nên M là trung điểm của IK
a: Xét tứ giác ABCD có
AD//BC
AB//CD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD