K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

A B H D C E

+ Kẻ AE là là phân giác của góc BAC 

Mà AD là phân giác của góc BAC nên AD vuông góc với AE \(\Rightarrow\)tam giác EAD vuông góc tại A 

 + Áp dụng định lí Pi-ta-go trong tam giác vuông AHD có: \(DH=\sqrt{AD^2-AH^2}=\sqrt{45^2-36^2}=27cm\)

 + Áp dụng hệ thức lượng giác trong tam giác vuông EAD có: \(AD^2=DH.DE\Rightarrow DE=\frac{AH^2}{DH}=\frac{45^2}{27}=75cm\)

 + Áp dụng tính chất phân giác trong và ngoài tam giác có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{EB}{EC}\)

Đặt: \(BD=x0< x< 40\Rightarrow CD=40-x\), ta có:

\(\frac{x}{40-x}=\frac{75-x}{75+40-x}\)do \(EB=DE-BD;EC=DE+DC\)

\(\Rightarrow x.115-x=40-x.75-x\)

\(\Leftrightarrow115x-x^2=3000-115x+x^2\Leftrightarrow x^2-115x+1500=0\)

\(\Rightarrow x=100\)loại hoặc \(x=15\)thoả mãn

Vậy: \(BD=15cm\)hoặc \(BD=40-15=25cm\). Nếu ta đổi vị trí B và C cho nhau

P/s: Câu hỏi của thang Tran - Toán lớp 9 - Học toán với OnlineMath

3 tháng 10 2017

thanks ban nha

24 tháng 10 2016

BD = 24

CD = 24

28 tháng 10 2016

 

ABCEHD

+) Kẻ AE là phân giác ngoài của góc BAC

Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A

+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = AD2AH2=452362=27 cm

+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm

+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC

Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:

x40x =75x75+(40x) (do EB = DE - BD; EC = DE + DC)

=> x. (115 - x) = (40 - x).(75 - x)

<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0

=> x = 100 (Loại) hoặc x = 15 (thoả mãn)

Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)

 
25 tháng 6 2021

ABCEHD

+) Kẻ AE là phân giác ngoài của góc BAC

Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A

+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm

+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm

+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC

Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:

x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)

=> x. (115 - x) = (40 - x).(75 - x)

<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0

=> x = 100 (Loại) hoặc x = 15 (thoả mãn)

Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)

NV
28 tháng 7 2021

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=10.tan45^0=10\)

\(cosB=\dfrac{BH}{AB}\Rightarrow AB=\dfrac{BH}{cosB}=\dfrac{10}{cos45^0}=10\sqrt{2}\)

Do tam giác ABH vuông tại H \(\Rightarrow\widehat{BAH}=90^0-\widehat{B}=45^0\)

\(\Rightarrow\widehat{CAH}=\widehat{A}-\widehat{BAH}=75^0-45^0=30^0\)

Trong tam giác vuông ACH:

\(cos\widehat{CAH}=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{cos\widehat{CAH}}=\dfrac{10}{cos30^0}=\dfrac{20\sqrt{3}}{3}\)

AD là phân giác góc A \(\Rightarrow\widehat{CAD}=\dfrac{1}{2}\widehat{A}=\dfrac{75^0}{2}=37^030'\)

\(\Rightarrow\widehat{DAH}=\widehat{CAD}-\widehat{CAH}=37^030'-30^0=7^030'\)

Trong tam giác vuông ADH:

\(cos\widehat{DAH}=\dfrac{AH}{AD}\Rightarrow AD=\dfrac{AH}{cos\widehat{DAH}}=\dfrac{10}{cos\left(7^030'\right)}\approx10,1\)

NV
28 tháng 7 2021

undefined

31 tháng 10 2023

a: Xét ΔABC có \(BC^2=AB^2+AC^2\left(20^2=400=144+256=12^2+16^2\right)\)

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot BC=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{12^2}{20}=7,2\left(cm\right)\\CH=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)

c: XétΔABC vuông tại A có

\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

=>\(\widehat{B}\simeq53^0\)

d: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

\(=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{96}{14}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

13 tháng 6 2021

A B C H 12

a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)

\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)

* Áp dụng hệ thức : 

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)

\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)

\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm 

\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm

\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)

Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2

13 tháng 6 2021

A B C H D 15 20

b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

Lại có : \(BC=BD+DC=15+20=35\)cm 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)

\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm 

\(\Rightarrow AB=\frac{3}{4}.28=21\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm 

\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm

Áp dụng định lí Pytago cho tam giác AHD vuông tại H 

\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm