K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

A D E I H K

Giải:

A thuộc trung trực của DH

\(\Rightarrow AD=AH\) (1)

A thuộc đường trung trực của HE

\(\Rightarrow AE=AH\) (2)

Từ (1), (2) \(\Rightarrow AE=AD\)

\(\Rightarrowđpcm\)

24 tháng 2 2020

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

2 tháng 2 2020

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

a) Xét ΔAIH vuông tại I và ΔAID vuông tại I có

AI chung

IH=ID(gt)

Do đó: ΔAIH=ΔAID(hai cạnh góc vuông)

Suy ra: \(\widehat{IAH}=\widehat{IAD}\)(hai góc tương ứng)

Xét ΔAHK vuông tại K và ΔAEK vuông tại K có 

AK chung

HK=EK(gt)

Do đó: ΔAHK=ΔAEK(hai cạnh góc vuông)

Suy ra: \(\widehat{HAK}=\widehat{EAK}\)(hai góc tương ứng)

Ta có: \(\widehat{DAE}=\widehat{DAI}+\widehat{IAH}+\widehat{HAK}+\widehat{EAK}\)

\(=2\cdot\widehat{BAH}+2\cdot\widehat{CAH}\)

\(=2\cdot\widehat{BAC}\)(đpcm)

2 tháng 2 2020

https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!

12 tháng 8 2017

A B C H I K E F

Vì \(AK⊥FH;FK=KH\) nên \(AK\)là đường trung trực của \(FH\)

\(\Rightarrow AF=AH\left(TC\right)\)(1)

Vì \(AI⊥HE;IH=IE\) nên \(AI\)là đường trung trực của \(HE\)

\(\Rightarrow AH=AE\)(2)

Từ (1);(2) \(\Rightarrow AF=AE\left(=AH\right)\) (đpcm)

12 tháng 11 2017

Bạn Đunh Đức Hùng làm đúng đó

a: Xét ΔAHE có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AB là phân giác của góc HAE và AE=AH

Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHF cân tại A

=>AC là phân giác của góc HAF và AH=AF

=>AE=AF

Xét ΔAHM và ΔAEM có

AH=AE
góc HAM=góc EAM

AM chung

=>ΔAHM=ΔAEM

=>góc AHM=góc AEM

Xét ΔAHN và ΔAFN có

AH=AF

góc HAN=góc FAN

AN chung

=>ΔAHN=ΔAFN

=>góc AHN=góc AFN

=>góc AHN=góc AHM

=>HA là phân giác của góc MHN

b: Xét ΔHEF có HI/HE=HK/HF

nên IK//EF

=>IK//MN

31 tháng 10 2021

a: Xét ΔAHE có 

AI là đường cao

AI là đường trung tuyến

Do đó: ΔAHE cân tại A

Suy ra: AE=AH(1)

Xét ΔAHF có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHF cân tại A

Suy ra: AF=AH(2)

Từ (1) và (2) suy ra AF=AE

31 tháng 10 2021

a, Vì AI là đg cao và trung tuyến tg AHE nên tg AHE cân tại A \(\Rightarrow AE=AH\)

Vì AK là đg cao và trung tuyến tg AHF nên tg AHF cân tại A \(\Rightarrow AF=AH\)

Vậy \(AE=AF\)

b, Vì AI, AK là đg cao của 2 tg cân nên chúng cũng là phân giác của 2 tg đó

\(\Rightarrow\widehat{EAF}=\widehat{EAH}+\widehat{HAF}=2\left(\widehat{KAH}+\widehat{IAH}\right)=2\cdot\widehat{BAC}=120^0\)

Vì \(AE=AF\) nên tg AEF cân tại A

Vậy \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-\widehat{EAF}}{2}=30^0\)

đường cao là đường gì thế ạ ??