K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABM và ΔDCM có 

MB=MC(M là trung điểm của BC)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MA=MD(gt)

Do đó: ΔABM=ΔDCM(c-g-c)

b) Ta có: ΔABM=ΔDCM(cmt)

nên AB=CD(Hai cạnh tương ứng)

mà AB<AC(gt)

nên CD<AC

Xét ΔACD có 

CD<AC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CAD}\)

và góc đối diện với cạnh AC là \(\widehat{ADC}\)

nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)

mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)

nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)

a: Xet ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC
MB=MC

=>ΔMAB=ΔMDC

b; góc BAM=góc CDA

mà góc CDA>góc CAM

nên góc BAM>góc CAM

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: MA=2,5cm

MB<AB

=>góc BAM<góc AMB

c: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

=>ABNC là hbh

mà góc BAC=90 độ

nên ABNC là hcn

=>CN vuông góc CA

a) xét tam giác ABM và tam giác DCM có:

          MA = MD (gt)

         góc AMB = góc CMD (đối đỉnh)

            BM = CM (gt)

=> tam giác ABM = tam giác DCM (c.g.c)

b) vì tam giác ABM = tam giác DCm (câu a)

=> AB = DC (cạnh tương ứng)

    góc ABM = góc MCD (góc tương ứng)

mà góc ABM và góc MCD ở vị trí so le trong

=> AB // DC