Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g ABD và t/g AED có:
AB = AE (gt)
BAD = EAD (gt)
AD là cạnh chung
Do đó, t/g ABD = t/g AED (c.g.c) (đpcm)
b) t/g ABD = t/g AED (câu a)
=> BD = ED (2 cạnh tương ứng)
ABD = AED (2 góc tương ứng)
Có: ABD + DBF = 180o( kề bù)
AED + DEC = 180o ( kề bù)
Nên DBF = DEC
Có: AF = AC (gt)
AB = AE (gt)
=> AF - AB = AC - AE
=> BF = CE
Xét t/g BDF và t/g EDC có:
BF = EC (cmt)
DBF = DEC (cmt)
BD = ED (cmt)
Do đó, t/g BDF = t/g EDC (c.g.c) (đpcm)
c) Gọi K là giao điểm của FC và DA ( kéo dài)
Dễ thấy, t/g AKF = t/g AKC (c.g.c)
=> AKF = AKC (2 góc tương ứng)
Mà AKF + AKC = 180o ( kề bù)
=> AKF = AKC = 90o
=> AK _|_ CF hay AD _|_ CF (đpcm)
a: Xét ΔDEB có
P là trung điểm của DE
Q là trung điểm của BE
Do đó: PQ là đường trung bình của ΔDEB
Suy ra: PQ//DB và \(PQ=\dfrac{DB}{2}\left(1\right)\)
Xét ΔDCB có
N là trung điểm của CD
M là trung điểm của BC
Do đó: NM là đường trung bình của ΔDCB
Suy ra: NM//DB và \(NM=\dfrac{DB}{2}\left(2\right)\)
Từ (1) và (2) suy ra NM//PQ và NM=PQ
hay NMQP là hình bình hành
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A