K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc MDB+góc MFB=180 độ

=>MDBF nội tiếp

góc MEC=góc MDC=90 độ

=>MDEC nội tiếp

b: Xét ΔMEC vuông tại E và ΔMFB vuông tại F có

góc MCE=góc MBF

=>ΔMEC đồng dạng với ΔMFB

=>ME/MF=MC/MB

=>ME*MB=MF*MC và góc EMC=góc FMB

=>góc FMB+góc BME=180 độ

=>F,M,E thẳng hàng

3 tháng 5 2018

b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)

Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)

MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)

Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)

=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)

Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)

* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)

tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)

Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)

c. Nối A với M, B với M 

Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)

Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)

Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)

lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)

từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)

Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)

Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)

Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)

Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)

Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)

Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)

21 tháng 6 2021

a) Ta có: \(\angle MEC=\angle MFC=90\Rightarrow MEFC\) nội tiếp

Ta có: \(\angle BDM+\angle BEM=90+90=180\Rightarrow BDME\) nội tiếp

\(\Rightarrow\angle DBM=\angle DEM\)

b) BDME nội tiếp \(\Rightarrow\angle BED=\angle BMD=90-\angle DBM\)

MEFC nội tiếp \(\Rightarrow\angle FEC=\angle FMC=90-\angle ACM\)

mà \(\angle DBM=\angle ACM\) (ABMC nội tiếp)

\(\Rightarrow\angle BED=\angle FEC\) mà B,E,C thẳng hàng \(\Rightarrow D,E,F\) thẳng hàng

Xét \(\Delta MBD\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MFC=\angle MDB\\\angle MCA=\angle MBD\end{matrix}\right.\)

\(\Rightarrow\Delta MBD\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MB}{MC}=\dfrac{MD}{MF}\Rightarrow MB.MF=MD.MC\)

c) Kẻ đường cao AH,BI

Ta có: \(\angle ARV=\angle ACB=\angle BVH\left(=90-\angle CBI\right)=\angle AVI\)

\(\Rightarrow\Delta AVR\) cân tại A có \(AC\bot VR\Rightarrow AC\) là trung trực VR

mà F nằm trên AC \(\Rightarrow FV=FR\Rightarrow\Delta FVR\) cân tại F \(\Rightarrow\angle FVR=\angle FRV\)

DF cắt BR tại G

\(\angle GRM=\angle BRM=\angle BCM=\angle ECM=\angle EFM=\angle GFM\)

\(\Rightarrow GRFM\) nội tiếp mà \(MF\parallel GR (\bot AC)\) \(\Rightarrow GRFM\) là hình thang cân

\(\Rightarrow\angle MGR=\angle FRG=\angle FRV=\angle FVR\) \(\Rightarrow VF\parallel GM\)

mà \(MF\parallel GR\) \(\Rightarrow VFMG\) là hình bình hành có GF,VM là các đường chéo nên cắt nhau tại trung điểm mỗi đường 

\(\Rightarrow DF\) đi qua trung điểm VM

undefined

 

21 tháng 6 2021

thank

What cái gì vậy tui đăng câu hỏi cơ mà

19 tháng 12 2021

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

25 tháng 3 2020

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0