Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có : điểm M nằm trên đường trung trực của BC nên M sẽ cách đều B và C => MB=MC
Ta có: AC=AM+MC
=> AC=AM+MB
Bài 2: Tam giác BNC cân tại N vì đường thẳng hạ từ N xuống vuong góc cạnh đối diện cũng là trung tuyến nên BN=NC
=> AN+BN=AN+NC=AC
a: AC^2=BA^2+BC^2
=>ΔABC vuông tại B
b: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
=>góc ANM=90 độ
=>MN vuông góc AC
c: AB=AN
MB=MN
=>AM là trung trực của BN
d: CT//BN
BN vuông góc AM
=>AM vuông góc CT
Xét ΔATC có
AM,CB là đường cao
AM cắt CB tại M
=>M là trực tâm
=>TM vuông góc AC
mà MN vuông góc AC
nên T,M,N thẳng hàng
Do O thuộc đường trung trực của MC
\(\Rightarrow MO=OC\) (1)
Do O thuộc đường trung trực của BC
\(\Rightarrow OC=OB\) 2)
Từ (1) và (2) \(\Rightarrow OM=OB\)
Lại có: \(AM=AB\)
\(\Rightarrow AO\) là đường trung trực của BM
hình tự vẽ nka :D
xét tam giác ABD và tam giác AMD có
AD chung
A1=A2
AB = AM
=> tam giác ABD = tam giác AMD ( c.g.c)
=> DM = BD