Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé!
a, Xét 2 tam giác vuông AEM và t/g CFM có:
AM=CM(gt)
\(\widehat{AME}=\widehat{CMF}\)(ĐỐI đỉnh)
=>\(\Delta AEM=\Delta CFM\)(cạnh huyền - góc nhọn)(đpcm)
b, Vì\(\Delta AEM=\Delta CFM\)(C/M câu a) nên \(\widehat{EAM}=\widehat{FCM}\)( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AF//CE
c,\(\widehat{PMF}+\widehat{QMF}=180\)độ
=>3 điểm P,Q,M thẳng hàng(đpcm)
k tớ nhé, hok tốt!
a: Xét ΔAME vuông tại E và ΔCMF vuông tại F có
AM=CM
\(\widehat{AME}=\widehat{CMF}\)
Do đó: ΔAME=ΔCMF
hình, bn tự vẽ!
Giải:
a/ Xét 2 t/g vuông: t/g AEM và t/g CFM có:
AM = CM (gt)
\(\widehat{AME}=\widehat{CMF}\) (đối đỉnh)
=> t/g AEM = t/g CFM (cạnh huyền - góc nhọn) (đpcm)
b/ Vì t/g AEM = t/g CFM (ý a)
=> \(\widehat{EAM}=\widehat{FCM}\)
mà 2 góc này ở vị trí so le trong nên:
=> AF//CE (đpcm)
c/ Ta có: \(\widehat{PMF}+\widehat{QMF}=180^o\)
=> P , Q , M thẳng hàng (đpcm)
Có hình ko bạn
Nhìn như này loạn quá
Với lại cái đề nó cũng dài quá nữa cơ
Nhìn muốn xỉu luôn ý.