Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)
=>AH=AK ( 2 cạnh tương ứng) -đpcm
b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:
\(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)
\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)
=> AI là ti phân giác góc KAH
Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH
=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm
c) Kẻ CM \(\perp\)BE
Xét tứ giác BKCM có:
\(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)
=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)
=> BK=CM (t/c) (1)
Dễ dàng chứng minh đc: BK=CH (2)
Từ (1) và (2) có : CM=CH
Xét \(\Delta BHC\)và \(\Delta BMC\)có:
\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)
=> \(\Delta BHC=BMC\left(ch-cgv\right)\)
=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)
=> BC là tia phân giác góc HBM
hay BC là tia phân giác HBE -đpcm
Chúc bạn học tốt!
d) Xét tam giác CME vuông tại M có CE là cạnh huyền
=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà CH=CM do \(\Delta CBH=\Delta CBM\)
=>CE>CH
A B C K M O E H P
a ) a.Vì P∈Trung trực của BC
\(\Rightarrow PB=PC\)
Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)
Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)
\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)
\(\Rightarrow BH=CK\)
b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)
\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)
\(\Rightarrow AH=AK\)
\(\Rightarrow\Delta AHK\) cân tại A
Mà AP là phân giác ^A
\(\Rightarrow AP\perp HK\)
Qua B kẻ BE // AK , \(E\in HK\)
\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)
Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)
\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)
Mà \(BH=CK\Rightarrow BE=CK\)
Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)
Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BME}=\widehat{KMC}\)
\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)
\(\Rightarrow E,M,K\) thẳng hàng
\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng
c ) Do \(PA\perp HK\) ( câu a )
\(\Rightarrow AP\perp HK=O\)
Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK
\(\Rightarrow OH=OK\)
\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)
\(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)
\(=AH^2+PH^2\)
\(=AP^2,\left(PH\perp AB\right)\)