K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông HBA và HAC, ta có:

(AHB) = (AHC) =  90 0

∠ B =  ∠ (HAC) (hai góc cùng phụ C )

Suy ra: △ HBA đồng dạng  △ HAC (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy A H 2 = B H . C H

26 tháng 12 2017

a) Theo hệ quả định lý Ta let ta có:

ΔABC có B’C’ // BC (B’ ∈ AB; C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAHC có H’C’ // HC (H’ ∈ AH, C’ ∈ AC) ⇒ Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 10 trang 63 SGK Toán 8 Tập 2 | Giải toán lớp 8

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Ta có: ΔABC\(\sim\)ΔHAC

nên AC/HC=BC/AC

hay \(AC^2=BC\cdot HC\)

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

10 tháng 5 2022

a, Xét Δ ABC và Δ HAC, có :

\(\widehat{ACB}=\widehat{HCA}\) (góc chung)

\(\widehat{BAC}=\widehat{AHC}=90^o\)

=> Δ ABC ∾ Δ HAC (g.g)

b, Ta có : Δ ABC ∾ Δ HAC (cmt)

=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

=> \(AC^2=BC.HC\)

c, Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> \(BC=5\left(cm\right)\)

 

4 tháng 5 2021

cau co cau tra loi chx 

5 tháng 5 2023

hộ e cái mọi người ơi

 

12 tháng 5 2017

xét tam giác AHB và tam giác CHA có

góc H = 90 độ

AH là cạnh chung

góc B = góc C (kề bù)

suy ra tam giác AHB đồng dạng tam giác CHA( G.C.G)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH\cdot AH=HB\cdot HC\)

\(\Rightarrow AH^2=HB\cdot HC\)

a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) là góc chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

15 tháng 3 2021
answer-reply-image lời giải đây nhé e ❤️. tham khảo nhé! 

a) Xét ΔABH vuông tại H và ΔAHE vuông tại E có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔAHE(g-g)

b) Xét ΔAEH vuông tại E và ΔHEB vuông tại E có 

\(\widehat{EAH}=\widehat{EHB}\left(=90^0-\widehat{EBH}\right)\)

Do đó: ΔAEH\(\sim\)ΔHEB(g-g)

Suy ra: \(\dfrac{EA}{EH}=\dfrac{EH}{EB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HE^2=AE\cdot BE\)(đpcm)