Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu ơi chứng minh 3 4 điểm ấy thuộc đường thẳng // với EF nhé
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
a) tg AEB đồng dạng tg AFC
=>^ABE=^ ACF
hay ^FBH=^ECH
tg FHB và tg EHC c ó
-^FBH=^ECH
-^FHB=^EHC
=> tg FHB và tg EHC đồng dạng
=>FH/EH=HB/HC
tg FHE và tg BHC có
- FH/EH=HB/HC
-^FHE=^BHC(2 g óc đối đỉnh)
=> tg FHE và tg BHC đồng dạng
tg ABD và CBF có
-^ADB=^CFB(=90 độ)
-^ABD=^CBF
=> tg ABD và CBF đồng dạng
=>AB/BC=BD/BF
=>BF.AB=BC.BD
Tương tự chứng minh:CE.CA=CD.BC
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
ANH CS THỂ THAM KHẢO
a , b tự lm nha ( dễ mà )
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
vẽ thêm cái vòng cung cho chất :V bài này khoảng ngày mai , kia rồi mình làm cho
hình gửi trong tin nhắn
\(\Delta BFC\) vuông tại \(F\) có \(MF\) là đường trung tuyến \(\Rightarrow\)\(MF=\frac{1}{2}BC\)
\(\Delta BEC\) vuông tại \(E\) có \(ME\) là đường trung tuyến \(\Rightarrow\)\(ME=\frac{1}{2}BC\)
\(\Rightarrow\)\(MF=ME\)\(\Rightarrow\)\(\Delta MEF\) cân tại \(M\) có \(MI\) là đường trung tuyến đồng thời là đường cao
\(\Rightarrow\)\(MI\perp EF\)
tương tự, ta cũng có : \(NQ\perp DF\)\(;\)\(PK\perp ED\)
\(\Delta DEF\) có \(MI,NQ,PK\) là 3 đường trung trực \(\Rightarrow\)\(MI,NQ,PK\) đồng quy
Bài 1:
+) Chứng minh tứ giác BFLK nội tiếp:
Ta thấy FAH và LAH là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBK}\) (Cùng phụ với góc \(\widehat{FAH}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
+) Chứng minh tứ giác CELK nội tiếp:
Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)
Suy ra tứ giác CELK nội tiếp.
Gọi H là trực tâm tam giác ABC.
Xét tứ giác BMID có \(\widehat{BMD}=\widehat{BID}=90^o\Rightarrow\) BMID là tứ giác nội tiếp.
\(\Rightarrow\widehat{MIB}=\widehat{MDB}\) (Hai góc nội tiếp cùng chắn một cung)
Xét tứ giác IHKD có\(\widehat{DIH}=\widehat{DKH}=90^o\Rightarrow\widehat{DIK}=\widehat{DHK}\)
Lại có \(\widehat{DHK}=\widehat{AHF}\) (đổi đỉnh) nên \(\widehat{DHK}=\widehat{ABD}\)
Tóm lại ta có \(\widehat{DIK}=\widehat{ABD};\widehat{MIB}=\widehat{BDM}\)
Hay \(\widehat{MIB}+\widehat{BID}+\widehat{DIN}=\widehat{MDB}+90^o+\widehat{MBD}=90^o+90^o=180^o\)
Vậy M, I, K thẳng hàng.
Hoàn toàn tương tự I, K , N thẳng hàng.
Vậy nên M, N, I, K thẳng hàng.