K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, D] Đoạn thẳng j: Đoạn thẳng [B, E] Đoạn thẳng k: Đoạn thẳng [C, F] Đoạn thẳng q: Đoạn thẳng [D, M] Đoạn thẳng r: Đoạn thẳng [D, I] Đoạn thẳng s: Đoạn thẳng [D, K] Đoạn thẳng t: Đoạn thẳng [D, N] Đoạn thẳng d: Đoạn thẳng [M, N] A = (-0.56, 7.34) A = (-0.56, 7.34) A = (-0.56, 7.34) B = (-2.58, 2.42) B = (-2.58, 2.42) B = (-2.58, 2.42) C = (6.44, 2.22) C = (6.44, 2.22) C = (6.44, 2.22) Điểm F: Giao điểm đường của g, c Điểm F: Giao điểm đường của g, c Điểm F: Giao điểm đường của g, c Điểm E: Giao điểm đường của h, b Điểm E: Giao điểm đường của h, b Điểm E: Giao điểm đường của h, b Điểm D: Giao điểm đường của f, a Điểm D: Giao điểm đường của f, a Điểm D: Giao điểm đường của f, a Điểm M: Giao điểm đường của l, c Điểm M: Giao điểm đường của l, c Điểm M: Giao điểm đường của l, c Điểm N: Giao điểm đường của m, b Điểm N: Giao điểm đường của m, b Điểm N: Giao điểm đường của m, b Điểm I: Giao điểm đường của n, j Điểm I: Giao điểm đường của n, j Điểm I: Giao điểm đường của n, j Điểm K: Giao điểm đường của p, k Điểm K: Giao điểm đường của p, k Điểm K: Giao điểm đường của p, k H

Gọi H là trực tâm tam giác ABC.

Xét tứ giác BMID có \(\widehat{BMD}=\widehat{BID}=90^o\Rightarrow\) BMID là tứ giác nội tiếp.

\(\Rightarrow\widehat{MIB}=\widehat{MDB}\) (Hai góc nội tiếp cùng chắn một cung)

Xét tứ giác IHKD có\(\widehat{DIH}=\widehat{DKH}=90^o\Rightarrow\widehat{DIK}=\widehat{DHK}\)

Lại có \(\widehat{DHK}=\widehat{AHF}\) (đổi đỉnh) nên \(\widehat{DHK}=\widehat{ABD}\)

Tóm lại ta có \(\widehat{DIK}=\widehat{ABD};\widehat{MIB}=\widehat{BDM}\)

Hay \(\widehat{MIB}+\widehat{BID}+\widehat{DIN}=\widehat{MDB}+90^o+\widehat{MBD}=90^o+90^o=180^o\)

Vậy M, I, K thẳng hàng.

Hoàn toàn tương tự I, K , N thẳng hàng.

Vậy nên M, N, I, K thẳng hàng.

29 tháng 8 2017

cậu ơi chứng minh 3 4 điểm ấy thuộc đường thẳng // với EF nhé

b: góc HID+góc HKD=180 độ

=>HIDK nội tiếp

=>góc HIK=góc HDK

=>góc HIK=góc HCB

=>góc HIK=góc HEF

=>EF//IK

17 tháng 10 2018

tui ko biết

17 tháng 10 2018

ê ko bt trả lời lm chi

31 tháng 10 2017

 a) tg AEB đồng dạng tg AFC 
=>^ABE=^ ACF 
hay ^FBH=^ECH 
tg FHB và tg EHC c ó 
-^FBH=^ECH 
-^FHB=^EHC 
=> tg FHB và tg EHC đồng dạng 
=>FH/EH=HB/HC 
tg FHE và tg BHC có 
- FH/EH=HB/HC 
-^FHE=^BHC(2 g óc đối đỉnh) 
=> tg FHE và tg BHC đồng dạng 
tg ABD và CBF có 
-^ADB=^CFB(=90 độ) 
-^ABD=^CBF 
=> tg ABD và CBF đồng dạng 
=>AB/BC=BD/BF 
=>BF.AB=BC.BD 
Tương tự chứng minh:CE.CA=CD.BC 

=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

5 tháng 1 2022

ANH CS THỂ THAM KHẢO 

a , b tự lm nha ( dễ mà )

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

Và MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

24 tháng 7 2020

hình

vẽ thêm cái vòng cung cho chất :V bài này khoảng ngày mai , kia rồi mình làm cho 

25 tháng 7 2020

hình gửi trong tin nhắn

\(\Delta BFC\) vuông tại \(F\) có \(MF\) là đường trung tuyến \(\Rightarrow\)\(MF=\frac{1}{2}BC\)

\(\Delta BEC\) vuông tại \(E\) có \(ME\) là đường trung tuyến \(\Rightarrow\)\(ME=\frac{1}{2}BC\)

\(\Rightarrow\)\(MF=ME\)\(\Rightarrow\)\(\Delta MEF\) cân tại \(M\) có \(MI\) là đường trung tuyến đồng thời là đường cao

\(\Rightarrow\)\(MI\perp EF\)

tương tự, ta cũng có : \(NQ\perp DF\)\(;\)\(PK\perp ED\)

\(\Delta DEF\) có \(MI,NQ,PK\) là 3 đường trung trực \(\Rightarrow\)\(MI,NQ,PK\) đồng quy 

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

2
19 tháng 12 2017

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

19 tháng 12 2017

Các bài còn lại em tách ra nhé.