Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
Đề phải là \(\Delta ABC\) vuông tại A nhé.
+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).
=> \(BC^2=3^2+4^2\)
=> \(BC^2=9+16\)
=> \(BC^2=25\)
=> \(BC=5\left(cm\right)\) (vì \(BC>0\)).
+ Vì điểm I cách đều 3 cạnh của \(\Delta ABC\left(gt\right)\)
=> \(BI=CI.\)
Xét 2 \(\Delta\) vuông \(BIM\) và \(CIM\) có:
\(\widehat{BMI}=\widehat{CMI}=90^0\left(gt\right)\)
\(BI=CI\left(cmt\right)\)
Cạnh IM chung
=> \(\Delta BIM=\Delta CIM\) (cạnh huyền - cạnh góc vuông).
=> \(BM=CM\) (2 cạnh tương ứng).
=> M là trung điểm của \(BC.\)
=> \(BM=CM=\frac{1}{2}BC\) (tính chất trung điểm).
=> \(BM=CM=\frac{1}{2}.5=\frac{5}{2}=2,5\left(cm\right).\)
=> \(BM=2,5\left(cm\right).\)
Vậy \(BM=2,5\left(cm\right).\)
Chúc bạn học tốt!
a) Xét t/g MIB và t/g MDC có:
MB = MC (gt)
BMI = CMD ( đối đỉnh)
IM = DM (gt)
Do đó, t/g MIB = t/g MDC (c.g.c) (đpcm)
b) t/g MIB = t/g MDC (câu a)
=> MIB = MDC (2 góc tương ứng)
Mà MIB và MDC là 2 góc ở vị trí so le trong nên BI // DC (1)
Xét t/g IMC và t/g DMB có:
MC = MB (gt)
IMC = DMB ( đối đỉnh)
IM = DM (gt)
Do đó, t/g IMC = t/g DMB (c.g.c)
=> ICM = DBM (2 góc tương ứng)
Mà ICM và DBM là 2 góc ở vị trí so le trong nên IC // BD (2)
(1) và (2) là đpcm
Ui re vipprohoichieu@gmail.com