K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {AB} .\overrightarrow {AC}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)

Mà \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC}\)\( \Rightarrow \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \cos \widehat {BAC}\)

Lại có: \(\cos \widehat {BAC} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)(suy ra từ định lí cosin)

\(\begin{array}{l} \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\\ \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC}  = c.b.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\\ \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC}  = \frac{{{b^2} + {c^2} - {a^2}}}{2}\end{array}\)

15 tháng 12 2020

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

15 tháng 12 2020

Đề đúng đó bạn ơi Hồng Phúc CTV

Đây là đề thi học kì năm ngoái của trường mình mà.

25 tháng 9 2023

Tham khảo:

a)  \(\)\(\overrightarrow {BA}  + \overrightarrow {AC}  = \overrightarrow {BC}  \Rightarrow \left| {\overrightarrow {BC} } \right| = BC = a\)

b) Dựng hình bình hành ABDC, giao điểm của hai đường chéo là O ta có:

\(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} \)

\(AD = 2AO = 2\sqrt {A{B^2} - B{O^2}}  = 2\sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = a\sqrt 3 \)

\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD = a\sqrt 3 \)

c) \(\overrightarrow {BA}  - \overrightarrow {BC}  = \overrightarrow {BA}  + \overrightarrow {CB}  = \overrightarrow {CB}  + \overrightarrow {BA}  = \overrightarrow {CA} \)

\( \Rightarrow \left| {\overrightarrow {BA}  - \overrightarrow {BC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\)

NV
3 tháng 5 2021

a.

\(P=cos120^0+cos120^0+cos120^0=-\dfrac{3}{2}\)

b.

\(A=\dfrac{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}=\dfrac{tanx-1}{tanx+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)

c.

\(A=\dfrac{cos\left(720+30\right)+sin\left(360+60\right)}{sin\left(-360+30\right)-cos\left(-360-30\right)}=\dfrac{cos30+sin60}{sin30-cos30}=-3-\sqrt{3}\)

19 tháng 5 2017

A B C
a) \(\overrightarrow{AB}.\overrightarrow{AC}=0\) do \(AB\perp AC\).
b)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+a^2}=\sqrt{2}a\).
\(\overrightarrow{BA}.\overrightarrow{BC}=BA.BC.cos\left(\overrightarrow{BA},\overrightarrow{BC}\right)=a.\sqrt{2}a.cos45^o=a^2\).
c) \(\overrightarrow{AB}.\overrightarrow{BC}=-\overrightarrow{BA}.\overrightarrow{BC}=-a^2\).

19 tháng 5 2017

a) Có
\(\overrightarrow{BC}^2=\left(\overrightarrow{BA}+\overrightarrow{AC}\right)^2=\overrightarrow{BA}^2+\overrightarrow{AC}^2+2\overrightarrow{BA}.\overrightarrow{AC}\)
\(=\overrightarrow{BA}^2+\overrightarrow{AC}^2-2\overrightarrow{AB}.\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{\overrightarrow{BA}^2+\overrightarrow{AC}^2-\overrightarrow{BC^2}}{2}=\dfrac{5^2+8^2-7^2}{2}=20\).
\(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=\dfrac{20}{5.8}=\dfrac{1}{2}\).
Vì vậy \(\widehat{BAC}=60^o\).
b) Tương tự:
\(\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2+CB^2-AB^2}{2}=\dfrac{7^2+8^2-5^2}{2}=44\).