K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

đặt \(\sqrt{x^2-6x+36}=\)M;\(\sqrt{x^2-6x+64}=\)N ,hiển nhiên M\(\ne\)N

M+N=7 <=>(M+N)(M-N)=7(M-N) <=>M2-N2=7(M-N) <=>-28=7(M-N) <=>N-M=4

A=2N-2M=2.4=8

NM
10 tháng 8 2021

Đặt \(\sqrt{x^2-6x+36}=a\ge0\Rightarrow\sqrt{x^2-6x+64}=\sqrt{a^2+28}\)

Vậy ta có phương trình :

\(a+\sqrt{a^2+28}=7\Leftrightarrow\sqrt{a^2+28}=7-a\Leftrightarrow\hept{\begin{cases}a\le7\\a^2+28=a^2-14a+49\end{cases}\Leftrightarrow a=\frac{3}{2}}\)

ta có : \(A=\sqrt{4\left(x^2-6x+36\right)+112}-2\sqrt{x^2-6x+36}=\sqrt{4a^2+112}-2a=8\)

Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)

\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)

\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)

mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)

NV
27 tháng 8 2021

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

7 tháng 7 2016

bạn kiểm tra lại biểu thức A đi bạn

 

2 tháng 9 2021

a,ĐK: x≥4

Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)

      \(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)

      \(\Leftrightarrow2\sqrt{x-4}=4\)

      \(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)

2 tháng 9 2021

b, ĐK: x≥2

Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)

      \(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)

      \(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)

8 tháng 7 2016

Đặt \(a=\sqrt{x^2-6x+19},a\ge0\) ; \(b=\sqrt{x^2-6x+10},b\ge0\)

\(\Rightarrow\begin{cases}a-b=3\\a^2-b^2=9\end{cases}\)  \(\Rightarrow A=a+b=3\)