Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
7.
Thể tích:
\(V=\pi\int\limits^{\frac{\pi}{2}}_0sin^2xdx=\frac{\pi}{2}\int\limits^{\frac{\pi}{2}}_0\left(1-cos2x\right)dx=\frac{\pi}{2}\left(x-\frac{1}{2}sin2x\right)|^{\frac{\pi}{2}}_0=\frac{\pi^2}{4}\)
8.
\(z=\frac{z-17i}{5-i}\Leftrightarrow\left(5-i\right)z=z-17i\)
\(\Leftrightarrow z\left(i-4\right)=17i\Rightarrow z=\frac{17i}{i-4}=1-4i\)
Rốt cuộc câu này hỏi modun hay phần thực vậy ta?
Phần thực bằng 1
Môđun \(\left|z\right|=\sqrt{17}\)
9.
\(\left(1-3i\right)z=8+6i\Rightarrow z=\frac{8+6i}{1-3i}=-1+3i\)
\(\Rightarrow\left|z\right|=\sqrt{\left(-1\right)^2+3^2}=\sqrt{10}\)
10.
\(\left(1+i\right)^2\left(2-i\right)z=8+i+\left(1+2i\right)z\)
\(\Leftrightarrow2i\left(2-i\right)z-\left(1+2i\right)z=8+i\)
\(\Leftrightarrow\left(4i+2-1-2i\right)z=8+i\)
\(\Leftrightarrow z=\frac{8+i}{2i+1}=2-3i\)
Phần thực \(a=2\)
11.
Điểm biểu diễn số phức là điểm có tọa độ \(\left(-1;-2\right)\)
4.
\(I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{dx}{sin^2x}=-cotx|^{\frac{\pi}{2}}_{\frac{\pi}{4}}=1\)
5.
\(I=\int\limits^a_2\frac{2x-1}{1-x}dx=\int\limits^a_2\left(-2-\frac{1}{x-1}\right)dx=\left(-2x-ln\left|x-1\right|\right)|^a_2=-2a-ln\left|a-1\right|+4\)
\(\Rightarrow-2a+4-ln\left|a-1\right|=-4-ln3\Rightarrow a=4\)
6.
Phương trình hoành độ giao điểm:
\(x^3=x^5\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Diện tích hình phẳng:
\(S=\int\limits^0_{-1}\left(x^5-x^3\right)dx+\int\limits^1_0\left(x^3-x^5\right)dx=\frac{1}{6}\)
9.
Vật dừng lại khi \(v=0\Leftrightarrow160-10t=0\Rightarrow t=16\)
\(s=\int\limits^{t_2}_{t_1}v\left(t\right)dt=\int\limits^{16}_0\left(160-10t\right)dt=\left(160t-5t^2\right)|^{16}_0=1280\left(m\right)\)
10.
Đặt \(z=x+yi\)
\(\frac{x+yi}{1-2i}+x-yi=2\Leftrightarrow\left(1+2i\right)\left(x+yi\right)+5x-5yi=10\)
\(\Leftrightarrow6x-2y+\left(2x-4y\right)i=10\)
\(\Rightarrow\left\{{}\begin{matrix}6x-2y=10\\2x-4y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow z=2+i\)
\(\Rightarrow w=\left(2+i\right)^2-\left(2+i\right)=1+3i\)
Phần thực bằng 1
11.
Đặt \(z=x+yi\)
\(\left|x+\left(y-1\right)i\right|=\left|\left(1+i\right)\left(x+yi\right)\right|\)
\(\Leftrightarrow\left|x+\left(y-1\right)i\right|=\left|x-y+\left(x+y\right)i\right|\)
\(\Leftrightarrow x^2+\left(y-1\right)^2=\left(x-y\right)^2+\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2+2y-1=0\)
Hoặc dạng chính tắc:
\(x^2+\left(y+1\right)^2=2\)
6.
Hổng hiểu đề bài?
Là diện tích hình phẳng giới hạn bởi các đường \(y=x^2-4;y=x^2-2x;x=-3;x=-2\) đúng ko?
Làm theo đề này nhé
Hoành độ giao điểm: \(x^2-4=x^2-2x\Leftrightarrow x=2\notin\left[-3;-2\right]\)
\(x^2-4=0\Leftrightarrow x=\pm2\)
\(x^2-2x=0\Rightarrow x=\left\{0;2\right\}\notin\left[-3;-2\right]\)
Diện tích:
\(S=\int\limits^{-2}_{-3}\left(x^2-2x-\left(x^2-4\right)\right)dx=\int\limits^{-2}_{-3}\left(4-2x\right)dx=\left(4x-x^2\right)|^{-2}_{-3}=9\)
7.
Đề này thì ko dịch nổi
8.
Phương trình hoành độ giao điểm:
\(x^2-x=x\Leftrightarrow x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Thể tích:
\(V=\pi\int\limits^2_0\left[x^2-\left(x^2-x\right)^2\right]dx=\pi\int\limits^2_0\left(-x^4+2x^3\right)dx\)
\(=\pi\left(-\frac{1}{5}x^5+\frac{1}{2}x^4\right)|^2_0=\frac{8\pi}{5}\)
\(\left|z\right|=1\Rightarrow z=cosx+i.sinx\)
\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)
\(=\left(cos3x-cosx+2\right)-i.\left(sin3x-sinx\right)\)
\(=\left(2-2sin2x.sinx\right)-i.2cos2x.sinx\)
\(=2\left[\left(1-sin2x.sinx\right)-i.cos2x.sinx\right]\)
\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)
\(A=2\sqrt{1-2sin2x.sinx+sin^22x.sin^2x+cos^22x.sin^2x}\)
\(A=2\sqrt{1-4sin^2x.cosx+sin^2x}\)
\(A=2\sqrt{1-4\left(1-cos^2x\right)cosx+1-cos^2x}\)
\(A=2\sqrt{4cos^3x-cos^2x-4cosx+2}\)
\(A_{max}\) khi \(4cos^3x-cos^2x-4cosx+2\) đạt max
Xét hàm \(f\left(t\right)=4t^3-t^2-4t+2\) trên \(\left[-1;1\right]\)
\(f'\left(t\right)=12t^2-2t-4=0\Rightarrow\left[{}\begin{matrix}t=-\frac{1}{2}\\t=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow f\left(t\right)\) đạt max tại \(t=-\frac{1}{2}\) hay \(A_{max}\) khi \(a=cosx=-\frac{1}{2}\)
\(\Rightarrow b^2=sin^2x=1-cos^2x=\frac{3}{4}\)
\(\Rightarrow P=2a+4b^2=-1+3=2\)
7.
\(\left(1+i\right)z=3z-i\Leftrightarrow\left(1+i-3\right)z=-i\)
\(\Leftrightarrow\left(i-2\right)z=-i\Rightarrow z=\frac{-i}{i-2}=-\frac{1}{5}+\frac{2}{5}i\)
Phần ảo là \(\frac{2}{5}\)
8.
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=2-x\\1-2y=3y+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{1}{5}\end{matrix}\right.\)
9.
\(\left|x-yi+2-i\right|=4\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y+1\right)^2=16\)
Đường tròn tâm \(I\left(-2;-1\right)\) bán kính \(R=4\)
10.
Mặt cầu tâm \(I\left(1;2;2\right)\)
Khoảng cách: \(d\left(I;\alpha\right)=\frac{\left|1+2.2-2.2-4\right|}{\sqrt{1^2+2^2+\left(-2\right)^2}}=1\)
4.
Giao điểm d và (P) thỏa mãn:
\(1-t+2.2t-2\left(1+t\right)+2=0\Rightarrow t=-1\)
Thay vào pt d ta được tọa độ: \(\left(2;-2;0\right)\)
5.
Theo quy tắc nhân ta có \(3.4=12\) cách
6.
\(z=x+yi\Rightarrow5\left(x-yi\right)-\left(x+yi\right)\left(2-i\right)=2-6i\)
\(\Leftrightarrow3x-y-\left(7y-x\right)i=2-6i\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\-x+7y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\Rightarrow z=1+i\Rightarrow\left|z\right|=2\)
Đáp án C.
Phương pháp giải: Lấy môđun hai vế để tìm z ,thế ngược lại để tìm số phức z
Lời giải:
Ta có
Lấy môđun 2 vế, ta được
z = - i - 1 + 2 + 2 = - i 1 + 2 = ( 1 - 2 ) i ⇒ a = 0 b = 1 - 2
Vậy