K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

NV
21 tháng 11 2021

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

21 tháng 11 2021

có cách nào k dùng mod k ạ?

10 tháng 2 2018

Tham khảo bài này :

cách 1: 
xét 3^k. 
chọn k từ 1 đến 999 ta được dãy số 
3; 3² ; 3³;...; 3^999 
999 số trên khi chia cho 1000 sẽ được 999 số dư 
(0,1...999) 
xét 2 trh: 
trh 1: số dư của các số trong dãy đôi một khác nhau 
=> tồn tại một số trong dãy chia 1000 dư 1 
=> 3^a -1 chia hết 1000 
=> đpcm 

trh2: số dư của các số trong dãy không khác nhau đôi một 
=> sẽ có it nhất 2 số đồng dư 
2 số đó là: 3^m và 3ⁿ (1≤m<n≤999) 
=> hiệu của 2 số này chia hết cho 1000 
=> 3ⁿ - 3^m = h.1000 
mà: 3ⁿ - 3^m = 3^m.(3^(n-m) -1) 
lại có: 3^m không chia hết cho 1000 
=> 3^(n-m) - 1 chia hết cho 1000 
mà 1≤m<n≤999 => 0 ≤ n - m ≤ 999 
=> đpcm 
vậy tồn tại số k thuộc N sao cho 3^k-1 chia hết 1000 
.......... ....... 
cách 2: 
xét k= 2n (n chẵn) 
A= 3^(2n) -1 
A= (10-1)^n -1 
khai triển nhị thức ta đc: 
A= 10ⁿ - 1Cn.10^(n-1) + 2Cn.10^(n-2) +...+ (n-2)Cn.10^2 - (n-1)Cn.10 +1 -1 
A= 1000.[10^(n-2) -.....(n-3)Cn] + 100.n.(n+1)\2 - 10n 
lấy n= 100m 
=>B= n.(n+1)\2.100 - 10n 
=>B= 1000.(50.101m -m) 
=> A chia hết 1000 khi k= 200m

3 tháng 4 2020

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath