Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để 972+200x chia hết cho 9 thì(9+7+2)+(2+0+0+x) chia hết cho 9=>18+2+x chia hết cho 9
=>20+x chia hết cho 9
=>x=7
a) a = 1,4,7 ; b = 0.
b) a = 3,7 ; b = 0,5.
c) a = 2,6 ; b = 0,5.
Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.
a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2.
- Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.
b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9.
- Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.
Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.
c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
- Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8.
- Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.
Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.
Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.
ta có abba=1000a+100b+10b+a=1001a+110b=11(91.a+10b)vậy số này chia hết cho 11
b,c cậu cũng phân tích cấu tạo số ra là xong
muốn chia cho 2,5 dư 1 suy ra số này phải có tận cùng là 1
Vậy tổng chữ số là
x+4+5+9+1=x+19
Vậy x=9thì thỏa mãn vậy số đó là tổng các chữ số chia 9 dư 1
94591
c/abcabc=1000.abc+abc=1001.abc chia hết cho 7;11;13
b/ababab=ab.10000+ab.100+ab=ab.10101 chia hết cho 7
a/abba=a.1000+b.100+b.10+a=a.1001+b.110 chia hết cho 11
\(M=\overline{2a6b}⋮2;⋮5\\ \Rightarrow b=0\\ \Rightarrow M=\overline{2a60}⋮9\\ \Rightarrow2+a+6+0⋮9\\ \Rightarrow8+a⋮9\\ \Rightarrow a=1\)
Vậy \(M=2160\)
a1; b0
2160