K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

Ta có \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Do \(\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\\\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\\\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\end{matrix}\right.\ne0\)\(a,b,c\ne0\)

\(\Rightarrow\left\{\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

Ta có \(A=x^{2008}+y^{2008}+z^{2008}\)

\(\Rightarrow A=0+0+0\)

\(\Rightarrow A=0\)

Vậy A = 0

7 tháng 2 2021

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)

\(\Rightarrow yza+zxb+xyc=0\)

\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

4 tháng 7 2016

Từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0=>\frac{ayz}{xyz}+\frac{bxz}{xyz}+\frac{cxy}{xyz}=0=>\frac{ayz+bxz+cxy}{xyz}=0=>ayz+bxz+cxy=0\)

Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1=>\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\)

\(=>\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(=>\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xyc}{abc}+\frac{yza}{abc}+\frac{xzb}{abc}\right)=1-2.0=1\)

Vậy M=1