K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2015

a/

\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)

\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)

b/

Q(x) = 0 với mọi x, suy ra các điều sau:

\(\Rightarrow Q\left(0\right)=c=0\)\(Q\left(1\right)=a+b+c=a+b=0\)\(Q\left(-1\right)=a-b+c=a-b=0\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)

Vậy \(a=b=c=0\)

27 tháng 1 2016

Vì a+b+c=0 nên ab,bc,ac bằng 0

23 tháng 6 2020

hb bé hơn hc đúng nhé

kết bạn với mình nhé

23 tháng 6 2020

ok trang nè

27 tháng 2 2017

Để |a| \(\le2\Leftrightarrow a\le2\)

27 tháng 2 2017

Ta có:

\(\left|a\right|\le2\Rightarrow-2\le a\le2\)

\(\Rightarrow a\in\left\{-2;-1;0;1;2\right\}\)

Vậy...

29 tháng 9 2018

\(a)\) Giả sử \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

\(\Leftrightarrow\)\(\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)

\(\Leftrightarrow\)\(\left|x\right|^2+2\left|xy\right|+\left|y\right|^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\)\(x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow\)\(2\left|xy\right|\ge2xy\)

\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng ) 

\(b)\) Giả sử \(\left|x\right|-\left|y\right|\le\left|x-y\right|\)

\(\Leftrightarrow\)\(\left(\left|x\right|-\left|y\right|\right)^2\le\left|x-y\right|^2\)

\(\Leftrightarrow\)\(\left|x\right|^2-2\left|xy\right|+\left|y\right|^2\le\left(x-y\right)^2\)

\(\Leftrightarrow\)\(x^2-2\left|xy\right|+y^2\le x^2-2xy+y^2\)

\(\Leftrightarrow\)\(-2\left|xy\right|\le-2xy\)

\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng ) 

Chúc bạn học tốt ~