K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

\(^{\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{10}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(1-\frac{1}{46}=\frac{45}{46}\)

Vì \(1-\frac{1}{46}< 1\)nên \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}< 1\)

Chúc bạn học tốt

17 tháng 5 2018

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(S=1-\frac{1}{43}\)

\(S=\frac{42}{43}< 1\)

19 tháng 4 2019

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(s=1-\frac{1}{46}< 1\)

Vậy S<1

19 tháng 4 2019

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{43\cdot46}\)

\(S=1\left[\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{43\cdot46}\right]\)

\(S=1\left[1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\right]\)

\(S=1\left[1-\frac{1}{46}\right]=1\cdot\frac{45}{46}=\frac{45}{46}< 1(đpcm)\)

9 tháng 5 2017

Ta có :

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+..............+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...............+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}< 1\)

\(\Rightarrow S< 1\rightarrowđpcm\)

9 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)

\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{40.43}+\dfrac{1}{43.46}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}=\dfrac{45}{46}\)

\(\dfrac{45}{46}< 1\)

=> \(S< 1\)

1 tháng 5 2015

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{2010.2013}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2010}-\frac{1}{2013}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{2013}\right)=\frac{1}{3}.\frac{2012}{2013}

8 tháng 4 2017

\(A=\frac{1}{1.4}+\frac{1}{2.7}+...+\frac{1}{67.70}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{67.70}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{70}\)

\(3A=1-\frac{1}{70}=\frac{69}{70}\)

\(A=\frac{69}{70}:3=\frac{23}{70}\)

vì \(\frac{23}{70}< 1\)

nên \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{67.70}< 1\)

8 tháng 4 2017

Vì nó bé hơn 1

22 tháng 9 2016

1/3.A=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)

=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)

=>A=\(\frac{99}{100}:\frac{1}{3}\)

=\(\frac{297}{100}\)

22 tháng 9 2016

\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=3.\left(1-\frac{1}{100}\right)\)

\(A=3.\frac{99}{100}=\frac{297}{100}\)

Các bạn chọn đúng cho mình nhé!

28 tháng 5 2019

#)Giải :

\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.11}+...+\frac{91}{88.91}\)

\(=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{88.91}\right)\)

\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{88}-\frac{1}{91}\right)\)

\(=\frac{91}{3}\left(1-\frac{1}{91}\right)\)

\(=\frac{91}{3}.\frac{90}{91}=30\left(đpcm\right)\)

         #~Will~be~Pens~#

28 tháng 5 2019

\(\frac{91}{1\cdot4}+\frac{91}{4\cdot7}+...+\frac{91}{88\cdot91}=\frac{1}{3}\left(91-\frac{91}{4}+\frac{91}{4}-\frac{91}{7}+...-\frac{91}{91}\right)\)

\(=\frac{1}{3}\left(91-1\right)=\frac{1}{3}\cdot90=30\)

27 tháng 7 2016

\(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)

\(A=1-\frac{1}{16}=\frac{15}{16}\)

27 tháng 7 2016

\(\frac{13}{16}\)

30 tháng 4 2017

A = \(\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+\frac{3^2}{10\cdot13}+\frac{3^2}{13\cdot16}+...+\frac{3^2}{97\cdot100}\)

A : 3 = \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{97\cdot100}\)

A : 3 = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{100}\)

A : 3 = \(\frac{1}{1}-\frac{1}{100}\)

A : 3 = \(\frac{99}{100}\)

A      = \(\frac{297}{100}\)

3 tháng 3 2017

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)

    \(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)

      \(=1-\frac{1}{46}< 1\)

Vậy \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}< 1\)