Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)
câu b tương tự
\(S3=16^5+21^5\)
vì 16+21=33 chia hết cho 33
=>165+215 chia hết cho 33
P/S: theo công thức:(n+m chia hết cho a=> nb+mb chia hết cho a)
S1 = 5+52+53+...+599+5100
=5. (1+5)+53 . (1+5) + ... + 599.(1+5)
= 5.6 +53.6+..+ 599.6
=6.(5+53 + ... +599):6
vậy x = ...
b)2+22+23+...+299+2100
=2.(1+2)+23.(1+2) + ... + 299.(1+2)
=2.3+23+..+299):3
= ....
c)165+215
vì 16+21 chia hế 33 nên
theo công thức(n+m chia hết cho a=(nb+mb)
\(A=1+5+5^2+5^3+...+5^{99}\)
\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)
\(A=6+5^2\cdot6+...+5^{98}\cdot6\)
\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)
\(B=1+5+5^2+5^3+...+5^{100}\)
\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)
\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)
\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)
a ⋮ c; b không chia hết cho c => a + b không chia hết cho c
=> S1 = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 52003 + 52004 )
=> S1 = 5.( 1 + 5 ) + 53.( 1 + 5 ) + .... + 52003.( 1 + 5 )
=> S1 = 5.6 + 53.6 + ....+ 52003.6
=> S1 = 6.( 5 + 53 + ... + 22003 )
Vì 6 ⋮ 6 => S1 ⋮ 6 ( đpcm )
=> S1 = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 52002 + 52003 + 52004 )
=> S1 = 5.( 1 + 5 + 52 ) + 54.( 1 + 5 + 52 ) + .... + 52002.( 1 + 5 + 52 )
=> S1 = 5.31 + 54.31 + .... + 52002.31
=> S1 = 31.( 5 + 54 + ... + 52002 )
Vì 31 ⋮ 31 => S1 ⋮ 31 ( đpcm )
=> S1 = ( 5 + 52 + 53 + 54 ) + ( 55 + 56 + 57 + 58 ) + ... + ( 52001 + 52002 + 52003 + 52004 )
=> S1 = 5.( 1 + 5 + 5.5 + 53 ) + 55.( 1 + 5 + 5.5 + 53 ) + ... + 52001.( 1 + 5 + 5.5 + 53 )
=> S1 = 5.156 + 55 .156 + ... + 52001.156
=>S1 = 156.( 5 + 55 + ... + 52001 )
Vì 156 ⋮ 156 nên S1 ⋮ 156 ( đpcm )
viet sai thi bai nay cung chi dang diem khong ma thoi nhin lai truoc khi bot
Vì B có 101 so hạng nên ta chia B thành 50 nhoms moi nhom co 2 so hạng và thừa 1 so hạng như sau:
\(B=1+\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^{99}+5^{100}\right)=1+5\left(1+5\right)+5^3\left(1+5\right)+.....+5^{99}\left(1+5\right)=1+5.6+5^3.6+....+5^{99}.6=1+6\left(5+5^3+.....+5^{99}\right)\Rightarrow\text{B chia 6 d}ư\text{ 1}\Rightarrow B⋮̸6\left(đpcm\right)\)
Để ý rằng B có 101 số hạng do đó không thể tách thành từ nhóm 2 số. Ta sẽ tách sao cho số 1 nằm ở ngoài, tổng các thừa số kia chia hết cho 6.
\(B=1+5\left(5+1\right)+5^3\left(5+1\right)+...+5^{99}\left(5+1\right)\)
\(=1+6\left(5+5^3+...+5^{99}\right)\)
Ta có: 1 không chia hết cho 6, \(6\left(5+5^3+...+5^{99}\right)⋮6\)
Do đó B không chia hết cho 6(đpcm)
Ta có S1=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)
S1=5.(1+5)+53.(1+5)+...+599.(1+5)
S1=5.6+53.6+...+599.6
S1=6.(5+53+...+599) sẽ chia hết cho 6.