K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2015

a,Tổng trên có 96 số hạng, nhóm 4 số thành 1 nhóm ta được 24 nhóm 

S = 5 + 52 + 53 +.....+ 596

S = (5+52+53+54)+(55+56+57+58)+.....+(593+594+595+596)

S = 5(1+5+52+53)+55(1+5+52+53)+....+593(1+5+52+53)

S = 5.156 + 55.156 +.....+ 593.156

S = 156.(5+55+....+593) chia hết cho 26 (vì 156 chia hết cho 26)

Ta có: 5+55+.....+593 có 24 số hạng có tận cùng là 5

(vì 5 nhân lên lũy thừa bao nhiêu cũng cho 1 số có tận cùng là 5)

=> 5+55+...+593 có tận cùng là (...5) + (...5) +......+ (...5) gồm 24 số

=> 5+55+...+593 có tận cùng là 5.24 = ...0

=> S = 156.(5+55+...+593)

=> S = 156.(...0)

=> S = (...0)

=> Chữ số tận cùng của S là 0

24 tháng 12 2016

sai câu b rùi cậu ơi 

17 tháng 9 2016

minh chi lam duoc phan b thoi thong cam nhe

co cac so luy thua cua 5 deu co tan cung la 5

=> cu 2 so cong lai bang mot so duoi 0

=> S co chan luy thua => S co tan cung la 0

17 tháng 9 2016

Bạn Trần Xuân Trung viết có dấu giùm được ko

23 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

2) 162008 - 82000

= (...6) - (84)500

= (...6) - (...6)500

= (...6) - (...6)

= (...0) chia hết cho 10

3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2

=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2

=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2

=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2

=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2

=> 1100 + 800 + 1125 = (x + 1)2 

=> 3025 = (x + 1)2, vô lí

24 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

26 tháng 12 2022

b)

B=5+52+...+596

Do 5 mũ bao niêu tận cùng là 5

=>tận cùng của B là chữ số tận cùng của tổng các chữ số tận cùng của các số hạng của B

Số số hạng của B là:96-1+1=96(số hạng)

=>Tổng các chữ số tận cùng của các số hạng của  B là:5x96=480

=>chữ số tận cùng của B là 0

Vậy chữ số tận cùng của B là 0

12 tháng 6 2016

a)5S=5(51+52+...+596)

5S=52+53+...+597

5S-S=(52+53+...+597)-(51+52+...+596)

4S=597-5

S=(597-5)/4

12 tháng 6 2016

a)5S=5(51+52+...+596)

5S=52+53+...+597

5S-S=(52+53+...+597)-(51+52+...+596)

4S=597-5

S=(597-5)/4

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ

 

3 tháng 9 2023

a) \(S=1+5+5^2+5^3+...+5^{28}\)

\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)

\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)

\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)

b) \(S=1+5+5^2+5^3+...+5^{28}\)

\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)

\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)

\(\Rightarrow4S=5^{29}-1\)

\(\Rightarrow4S+1=5^{29}-1+1\)

\(\Rightarrow4S=5^{29}=5^n\)

\(\Rightarrow n=29\)

3 tháng 9 2023

a) \(S=1+5+5^2+5^3+...+5^{28}\)

\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)

\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)

\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)

\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)

\(\Rightarrow dpcm\)

b) Bạn xem lại đề

25 tháng 2 2021

S=5+5^2+5^3+...+5^2004

S=(5+5^2+5^3+5^4)+(5^6+5^7+5^8+5^9)+...+(+5^2001+5^2002+5^2003+5^2004)

S=1(5+5^2+5^3+5^4)+5^5(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)

S=1*780+5^5*780+...+5^2000*780

S=780(1+5^5+..+5^2000)

vì 780 chia hết cho 65 nên S chia hết cho 65

k mik nha

23 tháng 10 2021

\(S=5+5^2+5^3+...+5^{1992}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{1991}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{1991}.6=6\left(5+5^3+...+5^{1991}\right)⋮6\)

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3