Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
\(b,\)Vì p là SNT > 3 => p có dạng : 3k + 1 ; 3k + 2 ( k thuộc N)
Với p = 3k + 1
\(=>\left(3k+2\right)\left(3k\right)⋮3\)(1)
Với p = 3k + 2
\(=>\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)
Từ (1) và (2) => ĐPCM
Cho S=5+52+53+...+52004 chứng minh S chia hết cho 126 và chia hết cho 65. Mong các bạn giúp đỡ mình!
S = 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004
5S = 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004 + 5^2005
=> 4S = 5^2005 - 5 = 5 (5^2004 - 1) => S = 5 (5^2004 - 1)/4
Để chứng minh S chia hết cho 126 ta chứng minh 5 (5^2004 - 1) chia hết cho 126.4=504=7.8.9
+ 7: Có 5^2 = 25 chia 7 dư (-3) => 5^2004 = (5^2)^1002 đồng dư vs (-3)^1002 = 3^1002 trong phép chia cho 7.
Lại có 3^3 = 27 chia 7 dư (-1) => 3^1002 = (3^3)^334 đồng dư vs (-1)^334 = 1 trong phép chia cho 7 => 3^1002 chia 7 dư 1
=> (5^2004 -1) chia hết cho 7
+ 8: Có 5^2 = 25 chia 8 dư 1 => 5^2004 = (5^2)^1002 đồng dư vs 1^1002 =1 trong phép chia cho 8
=> 5^2004 chia 8 dư 1 => (5^2004 - 1) chia hết cho 8
+ 9: Có 5^2 = 25 chia 9 dư (-2) => 5^2004 = (5^2)^1002 đồng dư vs (-2)^1002 = 2^1002 trong phép chia cho 9
Lại có: 2^3 = 8 chia 9 dư (-1) => 2^1002 = (2^3)^334 đồng dư vs (-1)^334 =1 trong phép chia cho 9
=> 2^1002 chia 9 dư 1
Suy ra 5^2004 chia 9 dư 1 => (5^2004 - 1) chia hết cho 9
Vì 7,8,9 đôi một ng tố cùng nhau nên (5^2004 - 1) chia hết cho 7.8.9 = 504 => đpcm.
Để CM S chia hết cho 65 = 5.13 ta chứng minh (5^2004 - 1) chia hết cho 13
Có 5^2 = 25 chia 13 dư (-1) => 5^2004 đồng dư vs (-1)^1002 = 1 trong phép chia cho 13 => 5^2004 chia 13 dư 1 => 5^2004 -1 chia hết cho 13
Vậy S chia hết cho 65
Tick nha
Ta có:
\(S=3+3^2+3^3+...+3^{2007}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{2005}+3^{2006}+3^{2007}\right)\)
\(=1.\left(3+3^2+3^3\right)+...+3^{2004}.\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).39=\left(1+...+3^{2004}\right).3.13\) chia hết chp 13
a) S= 3+3^2+....+3^2007
= ( 3 + 3^2 +3^3)+....+(3^2005+3^2006+2^2007)
= 3(1+3+9)+......+3^2005(1+3+9)
= 3. 13 +......+2^2005.13
=13(3+...+2^2005) chia hết cho 13
=> ĐPCM
b) S= 3+3^2+....+3^2007
= 3 + (3^2+3^3+3^4+3^5)+.....+(3^2004+3^2005+3^2006+3^2007)
= 3 + 3^2( 1+3+9+27)+.....+3^2004(1+3+9+27)
= 3+ 3^2.40 +....+3^2004.40
= 3+ 40(3^2+...+3^2004) chia cho 40 dư 3
MÌnh nghĩ câu c, k đến nỗi nào , cô lên , 2S + 3 thì cứ làm theo vd sau
A= 2+2^2+...+2^11
2A = 2^2+...+2^12
rồi làm hơ ,
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)
\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)
\(=5\left(1+...+4^{98}\right)⋮5\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}< 1\)
Chứng tỏ S < 1
Ủng hộ mk nha ^_^
S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}=\frac{45}{46}< 1\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
CHỨNG MINH S CHIA HẾT CHO 10 :
\(S=4+4^2+...+4^{2004}\)
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)
\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)
\(S=1.20+4^3.20+...+4^{2003}.20\)
\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )
\(=>dpcm\)
CHỨNG MINH 3S+4 CHIA HẾT CHO 42004
\(S=4+4^2+4^3+...+4^{2004}\)
\(4S=4+4^2+4^3+...+4^{2005}\)
\(3S=4S-S=4^{2005}-4\)
MÀ 42005 CHIA HẾT CHO 42004
\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)
a) \(S=4^0+4^1+4^2+...+4^{35}\)
\(S=\left(4^0+4^1+4^2\right)+...+\left(4^{33}+4^{34}+4^{35}\right)\)
\(S=21+...+4^{33}\cdot\left(1+4+4^2\right)\)
\(S=21+...+4^{33}\cdot21\)
\(S=21\cdot\left(1+...+4^{33}\right)⋮21\left(đpcm\right)\)
còn b) thì sao bạn ? giải dùm mik luôn đi thanks