K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

\(S=3+3^2+3^3+3^4+...+3^9\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

\(S=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)

\(S=3\cdot13+3^4\cdot13+3^7\cdot13\)

\(S=13\left(3+3^4+3^7\right)\)

\(S=13\cdot3\left(1+3^3+3^6\right)\)

\(S=39\cdot\left(1+3^3+3^6\right)\)

\(\Rightarrow S\) ⋮ 39

25 tháng 7 2023

Để chứng minh rằng s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39), ta sử dụng công thức tổng cấp số cộng:

S = a(1-r^n)/(1-r)

Trong đó:

S là tổng của cấp số cộng
a là số hạng đầu tiên của cấp số cộng
r là công bội của cấp số cộng
n là số lượng số hạng trong cấp số cộng
Áp dụng công thức trên, ta có:

a = 3
r = 3
n = 9
S = 3(1-3^9)/(1-3) = 29,523

Ta thấy rằng S không chia hết cho (-39), do đó giả thiết ban đầu là sai.

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

26 tháng 6 2016

P = 32 + 62 + 92 + ... + 302

P = 32 . (12 + 22 + 32 + ... + 102)

P = 9 . 385

P = 3465

a) C = 106 + 57

C = 26 . 56 + 57

C = 56 . (26 + 5)

C = 56 . (64 + 5)

C = 56 . 69 chia hết cho 69

b) 310 . 199 - 39 . 500

= 39 . (3.199 - 500)

= 39 . (597 - 500)

= 39 . 97 chia hết cho 97