Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(S_n=1-2+3-4+...+n\left(-1\right)^{n-1}\)
\(\Leftrightarrow S_n=1-2+3-4+...+n-\left(n+1\right)\)
\(\Leftrightarrow S_n=\left(1-2\right)+\left(3-4\right)+...+\left(n-\left(n+1\right)\right)\)
\(\Leftrightarrow S_n=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
(Có tất cả: \(\dfrac{\left(n+1-1\right):1+1}{2}=\dfrac{n+1}{2}\) chữ số -1)
\(\Leftrightarrow S_n=\left(-1\right)\left(\dfrac{n+1}{2}\right)\)
\(\Leftrightarrow S_n=\dfrac{-n-1}{2}\)
\(\Leftrightarrow S_{35}=\dfrac{-35-1}{2}=\dfrac{-36}{2}=-18\)
Và \(S_{60}=\dfrac{-60-1}{2}=\dfrac{-61}{2}=-30,5\)
Vì \(-18>-30,5\)
\(\Leftrightarrow S_{35}>S_{60}\)
Vậy ...
xét:
nếu n là số chẵn thì \(S_n=-\frac{n}{2}=>S_{60}=-30\)
nếu n là số lẻ thì \(S_n=\frac{n+1}{2}=>S_{35}=18=>S_{60}+S_{35}=-30+12=-12\)
S35 = 1 - 2 + 3 - 4 + ...+ (-1)35 -1 .35 = 1 - 2+ 3- 4 + ...+ 35
= (1 - 2) + (3 - 4) + ...+ (33 - 34) + 35 = (-1) + (-1) + ...+ (-1) + 35 (Có 34 số nên có 17 cặp số => có 17 sô -1)
= 17.(-1) + 35 = 18
S60 = 1- 2 + 3 - 4 + ...+ (-1)59. 60 = 1 -2 + 3 - 4 + ...+ 59 - 60
= (-1) + (-1) + ...+ (-1) (Có 30 số -1)
= (-1).30 = -30
=>S35 + S60 = 18 + (-30) = -12
Bài làm
S35 = 1 - 2 + 3 - 4 + ...+ (-1)35 -1 .35 = 1 - 2+ 3- 4 + ...+ 35
= (1 - 2) + (3 - 4) + ...+ (33 - 34) + 35 = (-1) + (-1) + ...+ (-1) + 35
= 17.(-1) + 35 = 18
S60 = 1- 2 + 3 - 4 + ...+ (-1)59. 60 = 1 -2 + 3 - 4 + ...+ 59 - 60
= (-1) + (-1) + ...+ (-1)
= (-1).30
= -30
=>S35 + S60 = 18 + (-30) = -12
hok tốt
a) Vì G là trọng tâm tam giác ABC nên \(GM = \dfrac{1}{3}AM\)
Kẻ \(BP \bot AM\) ta có
\(\begin{array}{l}{S_{GMP}} = \dfrac{1}{2}BP.GM\\{S_{ABM}} = \dfrac{1}{2}BP.AM\end{array}\)
\( \Rightarrow \dfrac{{{S_{GMP}}}}{{{S_{ABM}}}} = \dfrac{{GM}}{{AM}} = \dfrac{1}{3} \Rightarrow {S_{GMP}} = \dfrac{1}{3}{S_{ABM}}\)(1)
Tương tự, kẻ \(CN \bot AM\), ta có
\(\begin{array}{l}{S_{GMC}} = \dfrac{1}{2}CN.GM\\{S_{ACM}} = \dfrac{1}{2}CN.AM\\ \Rightarrow \dfrac{{{S_{GMC}}}}{{{S_{ACM}}}} = \dfrac{{GM}}{{AM}} = \dfrac{1}{3} \Rightarrow {S_{GMC}} = \dfrac{1}{3}{S_{ACM}}\left( 2 \right)\end{array}\)
Cộng 2 vế của (1) và (2) ta có:
\(\begin{array}{l}{S_{GMB}} + {S_{GMC}} = \dfrac{1}{3}\left( {{S_{AMC}} + {S_{ABM}}} \right)\\ \Rightarrow {S_{GBC}} = \dfrac{1}{3}{S_{ABC}}\end{array}\)
b)
Ta có
\(\begin{array}{l}{S_{GAB}} = \dfrac{1}{2}BP.AG\\{S_{GAC}} = \dfrac{1}{2}CN.AG\end{array}\)
Xét \(\Delta BPM\) và \(\Delta CNM\) có:
\(\widehat {BPM} = \widehat {CNM} = {90^0}\)
BM = CM ( M là trung điểm của BC)
\(\widehat {PMB} = \widehat {CMN}\)(2 góc đối đỉnh)
\( \Rightarrow \Delta BPM = \Delta CNM\)(cạnh huyền – góc nhọn)
\( \Rightarrow \) BP = CN (cạnh tương ứng)
\( \Rightarrow {S_{GAB}} = {S_{GAC}}\)
Ta có: \(AG = \dfrac{2}{3}AM\)
\(\begin{array}{l}{S_{ACB}} = {S_{GAB}} + {S_{GAC}} + {S_{GCB}}\\ \Rightarrow {S_{ACB}} = {S_{GAB}} + {S_{GAC}} + \dfrac{1}{3}{S_{ABC}}\\ \Rightarrow \dfrac{2}{3}{S_{ABC}} = 2{S_{GAC}}\\ \Rightarrow \dfrac{1}{3}{S_{ABC}} = {S_{GAC}} = {S_{GAB}}\end{array}\)
S1 = 5 => S2 = 3.5 + 1 = 16 => S3 = 16/2 = 8 => S4 = 8/2 = 4 => S5= 4/2 = 2 => S6 = 2/2 = 1
=> S7 = 4 => S8 = S5 = 2 => S9 = S6 = 1. Tiếp tục như vậy, ta thấy bộ 3 số 4; 2; 1 lặp lại trong dãy số
Vậy Từ S4 trở đi, cứ 3 số liên tiếp trong dãy bộ 3 số (4;2;1) sẽ lặp lại
Có thể viết dãy số trên như sau: (5;16;8) (4;2;1) (4;2;1) (4;2;1).....(4;2;1)
Có 2012 : 3 = 670 (dư 2) => đến S2012 có 670 bộ số, dư 2 số
=> S2012 là số thứ 2 trong bộ số thứ 671 => S2012 = 2