K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

mình ko biết dấu sao lag gì nên lam mò nhé

giả sử sao la dấu nhân

suy ra s<1/1.2+1/2.3+...+1/99.100

s<1/1-1/2+1/2-1/3+...+1/99-1/100

s<1/1-1/100

s<99/100<1

suy ra s<1

nếu sao là dấu cộng

suy ra s=+2/2.3+...+2/100.101

1/2s=1/2-1/3+1/3-1/4+...+1/100-1/101

1/2s=1/2-1/100<1/2

1/2 s <1/2 suy ra s<1
 

6 tháng 7 2018

thanks ban nhiu nha

2 tháng 2 2017

1.S1=1 - 2 + 3 - 4 + ... + 1997 - 1998 + 1999

       = (1 - 2) + ...+(1997 - 1998) + 1999

       = -1 + -1 + ...+-1 + 1999

 SH:1998 : 2

        = 999 . -1

        = -999

 TDS:-999 + 1999

        = 1000

b.S2=1 - 4 + 7 - 10 + ...- 2998+3001

       = (1 - 4) + (7 - 10) + ...+ (2995 - 2998) + 3001

       = -3 + -3 + ...+-3 + 3001

       = (2998 - 1) : 3 + 1

       = 1000 . -3

       = -3000 + 3001

       = 1

       

2 tháng 2 2017

câu b mình làm lộn :

S2=1000 : 2 

    = 500 . -3

    =-1500 + 3001

    = 1501 

KẾT QUẢ RA 1501 NHA

2A=1-1/2+1/2^2-...+1/2^98-1/2^99

=>3A=1-1/2^100

=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)

29 tháng 6 2016

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)

Ta có:

\(\frac{1}{2^2}< \frac{1}{1\times2}\)

\(\frac{1}{3^2}< \frac{1}{2\times3}\)

\(\frac{1}{4^2}< \frac{1}{3\times4}\)

\(...\)

\(\frac{1}{10^2}< \frac{1}{9\times10}\)

\(\rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)

\(\Rightarrow S< \frac{9}{10}\)mà \(S>0\Rightarrow\left[S\right]=0\)

1 tháng 7 2017

Ko cần đâu bn à mk mong bn đấy

a)\(\left(3x-1\right)\left(5-\frac{1}{2}x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)

b)\(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)

    \(2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}\)

    \(\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{29}{12}\\x=-\frac{13}{12}\end{cases}}\)

1 tháng 7 2017

a)\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow\)3x - 1 = 0      hay      \(\frac{-1}{2}\)x + 5 = 0
\(\Leftrightarrow\)3x     = 1         I\(\Leftrightarrow\)\(\frac{-1}{2}\)x     = -5
\(\Leftrightarrow\)  x     = \(\frac{1}{3}\)  I\(\Leftrightarrow\)            x     = 10

b) 2 I \(\frac{1}{2}x-\frac{1}{3}\)I - \(\frac{3}{2}\)=\(\frac{1}{4}\)
\(\Leftrightarrow\) 2 I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{4}\)
\(\Leftrightarrow\)    I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x-\frac{1}{3}\)\(\frac{7}{8}\)          hay     \(\frac{1}{2}x-\frac{1}{3}\)\(\frac{-7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x\)           = \(\frac{29}{24}\)        I\(\Leftrightarrow\)\(\frac{1}{2}x\)           = \(\frac{-13}{24}\)
\(\Leftrightarrow\)      x              = \(\frac{29}{12}\)        I\(\Leftrightarrow\)      x              = \(\frac{-13}{12}\)

c) (2x +\(\frac{3}{5}\))2 - \(\frac{9}{25}\)= 0
\(\Leftrightarrow\)(2x +\(\frac{3}{5}\))2       = \(\frac{9}{25}\)
\(\Leftrightarrow\) 2x +\(\frac{3}{5}\)         = \(\frac{3}{5}\)    hay      2x +\(\frac{3}{5}\)\(\frac{-3}{5}\)
\(\Leftrightarrow\) 2x                    = 0           I \(\Leftrightarrow\)2x           = \(\frac{-6}{5}\)
\(\Leftrightarrow\)   x                    = 0           I \(\Leftrightarrow\) x           = \(\frac{-3}{5}\)

d) 3(x -\(\frac{1}{2}\)) - 5(x +\(\frac{3}{5}\)) = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)3x - \(\frac{3}{2}\)- 5x - 3 = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)-2x + x - \(\frac{9}{2}\)\(\frac{1}{5}\)= 0
\(\Leftrightarrow\)-x = \(\frac{-47}{10}\)
\(\Leftrightarrow\) x = \(\frac{47}{10}\)