K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

3S=3+32+33+34+35+...+32016

2S+1=3S-S+1=(3+32+33+....+32016)-(1+31+32+...+32015)+1

        =32016=(31008)là số chính phương

6 tháng 1 2019

ai trả lời giúp tôi với

6 tháng 1 2019

\(S=1+3+3^2+3^3+...+3^{2019}\)

\(\Leftrightarrow3S=3+3^2+3^3+3^4+...+3^{2020}\)

\(\Leftrightarrow2S=3^{2020}-1\)

\(\Leftrightarrow2S+1=3^{2020}-1+1\)

\(\Leftrightarrow2S+1=3^{2020}\)

\(\Leftrightarrow2S+1=\left(2^{1010}\right)^2\)

\(\text{Vậy 2S + 1 là số chính phương}\)

5 tháng 6 2016

S là số vô hạn thì điều đó đúng. Còn S không phải là số vô hạn thì điều đó sai.

5 tháng 6 2016

2s = 2+4 +.......128 +..... chứ k phai 64, bạn khôn quá he

nên 2s khác s-1 nghe bạn , k lừa dc tui đâu

26 tháng 1 2022

a) x2-y2=45 =>(x-y)(x+y)=45. Vì x,y là các số tự nhiên và x-y<x+y nên ta có thể viết:

(x-y)(x+y)=3.15 hay (x-y)(x+y)=5.9

=>x-y=3 và x+y=15 hay x-y=5 và x+y=9.

=>x=9 và y=6 (đều loại) hay x=7 và y=2 (đều thỏa mãn).

- Vậy x=7, y=2.

26 tháng 1 2022

b) - Sửa lại đề: S=1+3+32+33+...+330.

=(1+3+32)+(32+33+34+35)+...+(327+328+329+330).

=13+32(1+3+32+33)+...+327(1+3+32+33)

=13+32.40+...+327.40

=13+40.(32+...+327) chia 5 dư 3.

- Mà các số chính phương chỉ có chữ số tận cùng là 0.1.4.5.6.9 nên số chính phương chia 5 dư 0;1;4.

- Vậy S không phải là số chính phương.

20 tháng 12 2021

a) tính ss hạng rồi nhóm 3 số hạng vào 1 nhóm 

vì tổng của 1 nhóm chia hết cho 13

=>s chia hết cho 13

b)n=1011

c) cmr s :4 dư 3

từ đó 

=>s không là số chính phương vì s:4 dư 3

13 tháng 3 2017

Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015

=> 3S = 3 + 32 + 33 + ...... + 32016

=> 3S - S = 32016 - 1

=> 2S = 32016 - 1

=> 2S + 1 = 32016

Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)

30 tháng 4 2016

a/ Ta co: 3S=\(3^2+3^3+3^4+...+3^{62}\)

           3S-S=\(3^{62}-3\)=2S mà \(3^{62}=3.3.3...3\)(62 thừa số 3)

Vì:62:4 dư 2 nên \(3^{62}\) có tận cùng là 9 nên \(3^{62}-3\)tận cùng là 6

2S tận cùng là 6 nên S tận cùng là 3;8

Vì số chính phương chỉ có tận cùng là 0;1;4;9;6;5 nên S không là số chính phương.

b/Vì 2S=\(3^{62}-3\)nên 2S+3=\(3^{62}-3+3\)=\(3^{62}\)=\(3^{31+31}=3^{31}.3^{31}\)là số chính phương