Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3+3^2+3^3+...+3^{2019}\)
\(\Leftrightarrow3S=3+3^2+3^3+3^4+...+3^{2020}\)
\(\Leftrightarrow2S=3^{2020}-1\)
\(\Leftrightarrow2S+1=3^{2020}-1+1\)
\(\Leftrightarrow2S+1=3^{2020}\)
\(\Leftrightarrow2S+1=\left(2^{1010}\right)^2\)
\(\text{Vậy 2S + 1 là số chính phương}\)
S là số vô hạn thì điều đó đúng. Còn S không phải là số vô hạn thì điều đó sai.
2s = 2+4 +.......128 +..... chứ k phai 64, bạn khôn quá he
nên 2s khác s-1 nghe bạn , k lừa dc tui đâu
a) x2-y2=45 =>(x-y)(x+y)=45. Vì x,y là các số tự nhiên và x-y<x+y nên ta có thể viết:
(x-y)(x+y)=3.15 hay (x-y)(x+y)=5.9
=>x-y=3 và x+y=15 hay x-y=5 và x+y=9.
=>x=9 và y=6 (đều loại) hay x=7 và y=2 (đều thỏa mãn).
- Vậy x=7, y=2.
b) - Sửa lại đề: S=1+3+32+33+...+330.
=(1+3+32)+(32+33+34+35)+...+(327+328+329+330).
=13+32(1+3+32+33)+...+327(1+3+32+33)
=13+32.40+...+327.40
=13+40.(32+...+327) chia 5 dư 3.
- Mà các số chính phương chỉ có chữ số tận cùng là 0.1.4.5.6.9 nên số chính phương chia 5 dư 0;1;4.
- Vậy S không phải là số chính phương.
a) tính ss hạng rồi nhóm 3 số hạng vào 1 nhóm
vì tổng của 1 nhóm chia hết cho 13
=>s chia hết cho 13
b)n=1011
c) cmr s :4 dư 3
từ đó
=>s không là số chính phương vì s:4 dư 3
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
a/ Ta co: 3S=\(3^2+3^3+3^4+...+3^{62}\)
3S-S=\(3^{62}-3\)=2S mà \(3^{62}=3.3.3...3\)(62 thừa số 3)
Vì:62:4 dư 2 nên \(3^{62}\) có tận cùng là 9 nên \(3^{62}-3\)tận cùng là 6
2S tận cùng là 6 nên S tận cùng là 3;8
Vì số chính phương chỉ có tận cùng là 0;1;4;9;6;5 nên S không là số chính phương.
b/Vì 2S=\(3^{62}-3\)nên 2S+3=\(3^{62}-3+3\)=\(3^{62}\)=\(3^{31+31}=3^{31}.3^{31}\)là số chính phương
3S=3+32+33+34+35+...+32016
2S+1=3S-S+1=(3+32+33+....+32016)-(1+31+32+...+32015)+1
=32016=(31008)2 là số chính phương