K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

Nhờ thì nói luôn đi, đố cái gì-.-

a) Ta có: \(S=1+2+...+2^{59}\)

\(\Rightarrow2S=2+2^2+...+2^{60}\)

\(\Rightarrow2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)

\(\Leftrightarrow S=2^{60}-1< 2^{60}\)

b) Ta có: \(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{57}+2^{58}+2^{59}\right)\)

\(S=7+2^3\cdot7+...+2^{57}\cdot7\)

\(S=7\cdot\left(1+2^3+...+2^{57}\right)\) chia hết cho 7

8 tháng 10 2020

theo mik thì bạn phải tách ra là S = 1+2+2^2+2^3+2^4+2^5+2^7 chứ ???

3 tháng 10 2017

1. S = 1 + 2 + 2^2 +.........+ 2^59

  2S = 2 + 2^2 + ...........+ 2^59 + 2 ^60

2S - S = (2 + 2^2 +.........+ 2^60) - (1 +2 + 2^2 +..........+ 2^59)

 S = 2^60 - 1

mà 2^60 -1 = 2^60 - 1 => S = 2^60 -1

2.

Ta có : S = 1 + 2 +..............+ 2^59

S = 1(1 +2) + 2^2(1 +2 ) +........+ 2^58(1 +2)

S = 1.3 + 2^2.3 +...............+ 2^58.3

S = 3.(1 + 2^2 +.............+2^58) nên S chia hết cho 3

Cứ như vậy bạn nhóm các số hạng của S để tạo thành tổng có kết quả là 7 và 15 rồi tự chứng minh nhé

1 tháng 10 2017

S=1+2+2^2+2^3+....+2^59 chia hết cho 3

S=(1+2)+(2^2+2^3)+..+(2^58+2^59)

S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)

S=1x3+2^2x3+....+2^58x3

S=3x(1+2^2+.....+2^58)chia hết cho 3

Vậy S chia hết cho 3

tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số

you học lớp mấy

27 tháng 9 2017

a) Ta có: \(S=1+2+2^2+...+2^{59}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{60}\)

\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)

\(\Rightarrow S=2^{60}-1\)

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

14 tháng 10 2017

Lẹ đi mọi người mik đang cần gấp!

14 tháng 10 2017

1/ ta có : 

11.12.13+ 114.115.116+ 1117.1118.1119= 11.3.4.13+ 3.38.115.116+ 1117.1118.3.373

= 3(11.4.13+ 38.115.116+ 1117.1118.373 ) chia hết cho 3 => đpcm

2/ a)(mik nghĩ là bn nhầm, nếu 7^2 +...+ 7^60 chia hết cho 8 thì chắc chắn là sai hoàn toàn, nên mik sửa đề) ta có :

S = \(7+7^2+7^3+7^4+7^5+...+7^{59}+7^{60}\) 

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{59}.7^{60}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{59}.8\)

\(=8\left(7+7^3+...+7^{59}\right)⋮8\)(đpcm)

b) \(A=a+a^2+a^3+a^4+...+a^{23}+a^{24}\)

\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{23}+a^{24}\right)\)

\(=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{23}\left(1+a\right)\)

\(=\left(1+a\right)\left(a+a^3+...+a^{23}\right)⋮\left(a+1\right)\)(đpcm)

Nhớ kb với mik nha!

Mình chỉ biết làm ý a thôi :)

S = 21 + 22 + 23 + ... + 299 + 2100

S = ( 21 + 22 ) + ... + ( 299 + 2100 )

S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )

S = 21 . 3 + ... + 299 . 3

S = 3( 21 + ... + 299 ) chia hết cho 3

13 tháng 3 2019

cs chép sai đè ko vậy

14 tháng 3 2019

không

14 tháng 11 2018

Vì UCLN(a,b)=30 nên ta đặt a=30c, b=30d (c,d thuộc N và c<d,UCLN(c, d) =1)

Ta có a+b=30c+30d=240=>c+d=8.

Vì UCLN(c,d)= 1 và c<d nên ta có 2 trường hợp :

c=7, d=1 suy ra a=210, b=30

c=5, d=3 suy ra a=150, b=90.

Chúc bạn học tốt!

Kb vs mình nha

21 tháng 3 2018

a, Tính 2S rồi S=2S-S= 261-2

b, nhóm 2 số rồi t/c phân phối được chia hết cho 3

nhóm 3 số rồi t/c phân phối được chia hết cho 7

nhóm 4 số rồi t/c phân phối được chia hết cho 15

nhóm 5 số rồi t/c phân phối được chia hết cho 31

nhóm 6 số rồi t/c phân phối được chia hết cho 63

nhóm 7 số rồi t/c phân phối được chia hết cho 127

19 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Hoàng Phi 6 - Toán lớp 6 - Học toán với OnlineMath