Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Bài làm
Ta có:
\(\frac{1}{11}>\frac{1}{20}\), \(\frac{1}{12}>\frac{1}{20}\), \(\frac{1}{13}>\frac{1}{20}\), \(\frac{1}{14}>\frac{1}{20}\), \(\frac{1}{15}>\frac{1}{20}\), \(\frac{1}{16}>\frac{1}{20}\), \(\frac{1}{17}>\frac{1}{20}\), \(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)
=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)
hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)
=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Do đó: \(S=\frac{1}{2}\)
# Chúc bạn học tốt #
Ta thấy:
1/11<1/4
1/12<1/4
.......
1/20<1/4
Suy ra ta có:
(1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20)<1/4 nhân 2 hay chính là nhỏ hơn 1/2
Ta có:
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(...............\)
\(\frac{1}{19}>\frac{1}{20}\)
\(\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+......+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\) ( vì S có 20 số hạng )
\(\Rightarrow S>\frac{1}{2}\)
Vậy: \(S>\frac{1}{2}\)
Ta có: \(\dfrac{1}{11}>\dfrac{1}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
\(\dfrac{1}{13}>\dfrac{1}{20}\)
\(\dfrac{1}{14}>\dfrac{1}{20}\)
\(\dfrac{1}{15}>\dfrac{1}{20}\)
\(\dfrac{1}{16}>\dfrac{1}{20}\)
\(\dfrac{1}{17}>\dfrac{1}{20}\)
\(\dfrac{1}{18}>\dfrac{1}{20}\)
\(\dfrac{1}{19}>\dfrac{1}{20}\)
\(\dfrac{1}{20}=\dfrac{1}{20}\)
=> \(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}>\dfrac{1}{20}.10\)
hay S > \(\dfrac{1}{2}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 11 < 20 )
\(\dfrac{1}{12}>\dfrac{1}{20}\) ( vì 1 > 0 , 0 < 12 < 20 )
...
\(\dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\)( 10 số hạng )
\(\Rightarrow S>\dfrac{1}{20}.10\Rightarrow S>\dfrac{10}{20}\Rightarrow S>\dfrac{1}{2}\)
Vậy ...
ta thấy: 1/11;1/12;1/13;...;1/19;1/20 đều >1/20
=>1/11+1/12+...1/19+1/20>1/20+1/20...+1/20
1/11+1/12+...1/19+1/20>10/20
1/11+1/12+...1/19+1/20>1/2 vậy S>1/2
\(\frac{1}{11}\)> \(\frac{1}{20}\)
\(\frac{1}{12}\)> \(\frac{1}{20}\)
.
.
.
\(\frac{1}{19}\)>\(\frac{1}{20}\)
\(\frac{1}{20}\)= \(\frac{1}{20}\)
=> S = 1/11+1/12+...+1/20>1/20+1/20+1/20+1/20+1/20+1/20+1/20+1/20+1/20+1/20=10*1/20=1/2 (đpcm)
Ta có:
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
.............
\(\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 phân số \(\frac{1}{20}\))
\(\Leftrightarrow\frac{10.1}{20}=\frac{10}{20}=\frac{1}{2}\)
Vì \(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{2}\). Mà \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{2}\)
Số lượng số của S là :
\(\left(20-11\right):1+1=10\)( số )
Ta có :
\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};...;\frac{1}{19}>\frac{1}{20};\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(\Rightarrow S>\frac{1}{20}.10\)
\(\Rightarrow S>\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
Ta có:
1/11 + 1/12 + 1/13 + ....................... + 1/ 20 > 1/20 +1/20 +1/ 20 +1/20 +1/20 +1/20 +1/20 +1/ 20 +1/20 +1/20 = 1/2
=> S > 1/2
Vậy S > 1/2