K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

31 tháng 12 2017

12 tháng 5 2019

Đáp án D

24 tháng 4 2016

2)không.Vì hiệu của 2 số là 1 số lẻ nên số trừ phải là số lẻ hoặc chẵn nhưng trong trường hợp này số trừ lẻ thì số bị trừ chẵn mà SBT là SNT nên SBT=2( vô lý vì SBT luôn >2014)

còn nếu số trừ chẵn thì số trừ =2 SBT=2015( là hợp số)

             

 

24 tháng 4 2016

1)C=3^210

   C=3^200*3^10

   D=2^310=

D=2^300*2^10

Mà 3^200=(3^2)^100=9^100

      2^300=(2^3)^100=8^100

nên 3^200>2^300

Mà 3^10>2^10

Nên 3^200*3^10>2^300*2^10

             C>D

3)Gọi số số hạng là n

ta có

   A=1-5+9-13+17-21+25-...

    A=1+4+4+4...=2013(có n/2-1 số 4)

    A=1+4*(n/2-1)=2013

    A=1+2*n-4=2013

   1+2*n=2017

       2*n=2016

n=1008

số cuối là 4029(tui làm lụi đó hông bít có đúng hk)ngaingung

28 tháng 4 2016

x O y m 30 z

Phải là xoz= 60o bạn à.

Vì 2 tia Om và Oz cũng nằm trên cùng một nửa mặt phẳng nên 2 góc đó không kề nhau

Ta có:

xÔm + xÔz = 30+ 60= 90o

=> 2 góc phụ nhau.

b) Trên cùng một nửa mặt phẳng bờ là đường thẳng xy, vì xÔm < xÔz nên tia Om nằm giữa 2 tia Ox và Oz

Ta có:  

xÔm + mÔz = xÔz

=> 30o + mÔz = 60o

=>mÔz = 30o

24 tháng 1 2016

?

24 tháng 1 2016

khó

15 tháng 6 2019

\(a,\)\(xy+3x+2y=6\)

\(\Rightarrow xy+3x+2y+6=6+6\)

\(\Rightarrow x\left(y+3\right)+2\left(y+3\right)=12\)

\(\Rightarrow\left(y+3\right)\left(y+2\right)=12\)

\(TH1\):\(\orbr{\begin{cases}y+3=1\\x+2=12\end{cases}\Rightarrow\orbr{\begin{cases}y=-2\\x=10\end{cases}}}\)

\(TH2\)\(\orbr{\begin{cases}y+3=-1\\x+2=-12\end{cases}\Rightarrow\orbr{\begin{cases}y=-4\\x=-14\end{cases}}}\)

\(TH3\)\(\orbr{\begin{cases}y+3=12\\x+2=1\end{cases}\Rightarrow\orbr{\begin{cases}y=9\\x=-1\end{cases}}}\)

\(TH4\)\(\orbr{\begin{cases}y+3=-12\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=-15\\x=-3\end{cases}}}\)

\(TH5\)\(\orbr{\begin{cases}y+3=2\\x+2=6\end{cases}\Rightarrow\orbr{\begin{cases}y=-1\\x=4\end{cases}}}\)

\(TH6\)\(\orbr{\begin{cases}y+3=6\\x+2=2\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)

\(TH7\)\(\orbr{\begin{cases}y+3=-2\\x+2=-6\end{cases}\Rightarrow\orbr{\begin{cases}y=-5\\x=-8\end{cases}}}\)

\(TH8\)\(:\)\(\orbr{\begin{cases}y+3=-6\\x+2=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=-9\\x=-4\end{cases}}}\)

\(TH9\)\(\orbr{\begin{cases}y+3=3\\x+2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\x=2\end{cases}}}\)

\(TH10\)\(\orbr{\begin{cases}y+3=4\\x+2=3\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=1\end{cases}}}\)

\(TH11\)\(\orbr{\begin{cases}y+3=-3\\x+2=-4\end{cases}\Rightarrow\orbr{\begin{cases}y=-6\\x=-6\end{cases}}}\)

\(TH12\)\(\orbr{\begin{cases}y+3=-4\\x+2=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=-7\\x=-5\end{cases}}}\)

KL...

15 tháng 6 2019

chưa thấy bạn nào làm bài 3 , thì em làm ạ :))

Giả sử x, y là các số nguyên thoă mãn phương trình đã cho .

\(4x+5y=2012\Leftrightarrow5y=2012-4y\Leftrightarrow5y=4\left(503-y\right).\)(1)

Dễ thấy vế phải của (1) chia hết cho 4 \(\Rightarrow5y⋮4\)mà (5;4)=1 nên y chia hết cho 4.

Đặt \(y=4t\left(t\in Z\right)\)thế vào phương trình đầu ta được : \(4x+20t=2012\Leftrightarrow\hept{\begin{cases}x=503-5t\\y=4t\end{cases}.}\)(*)

Thử thay vào các biểu thức của x, y ở (*) ta thấy thỏa mãn 

Vậy phương trình có vô số nghiệm \(\left(x;y\right)=\left(503-5t;4t\right)\forall t\in Z.\)

26 tháng 7 2017

Đáp án C