\(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2021

Do \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\) nên \(P\left(x\right)-7=0\) có 4 nghiệm nguyên phân biệt

\(\Rightarrow P\left(x\right)-7=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)\) với Q(x) là đa thức có giá trị nguyên khi x nguyên

Xét phương trình: \(P\left(x\right)-14=0\)

\(\Leftrightarrow P\left(x\right)-7=7\)

\(\Leftrightarrow\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)=7\) (1)

Do a;b;c;d phân biệt \(\Rightarrow\) vế trái là tích của ít nhất 4 số nguyên phân biệt khi x nguyên

Mà 7 là số nguyên tố nên chỉ có thể phân tích thành tích của 2 số nguyên phân biệt

\(\Rightarrow\) Không tồn tại x nguyên thỏa mãn (1) hay \(P\left(x\right)-14=0\) ko có nghiệm nguyên

23 tháng 2 2018

thôi ko cân nữa,  ghi sai đề

17 tháng 3 2019

Thấy Q(2) = 14

=> am.xm+am-1.xm-1.......a1x.a0= 14( am,am-1,...,a1,a0 thuộc N, a0 khác 0)

=> am.2m+am-1.2m-1.......a12.a0= 14

Thấy : 2m,2m-1,...,2 là số chẵn 

=> am,2m,...,a12 là số chẵn

=> a0 là số chẵn

* Nếu a lẻ

=> a + 83 chẵn

cmtt, có P(a + 83 là số chẵn )

* Nếu a chẵn

=> ....(cmtt)

=> P(a) chẵn

=> P(x) chẵn với mọi X thuộc N

=> Q(p(x)) chẵn và = 2014

:PPPPPPPPPPP

8 tháng 3 2018

a, => p^2 = 5q^2 + 4

+, Nếu q chia hết cho 3 => q=3 => p=7 ( t/m )

+, Nếu q ko chia hết cho 3 => q^2 chia 3 dư 1 => 5q^2 chia 3 dư 5

=> p^2 = 5q^2 + 4 chia hết cho 3

=> p chia hết cho 3 ( vì 3 là số nguyên tố )

=> p = 3 => q = 1 ( ko t/m )

Vậy p=7 và q=3

Tk mk nha

NM
19 tháng 1 2021

Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.

đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1

Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.

suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020

mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)

xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1 

hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1.  Suy ra vô lý. 

Vậy P(x)  không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

27 tháng 5 2017

theo cong thuc  x1 x2

11 tháng 11 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\)

Khi đó: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[ab+bc+ca+a^2\right]\left[ab+bc+ca+b^2\right]\left[ab+bc+ca+c^2\right]\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)là số chính phương.

Bài 1:Giải các phương trình sau:a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)Bài 2:Cho a,b,c thỏa mãn a+b+c=1Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)Bài 3:Giải hệ phương trình:\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)Bài 4:Tìm các cặp số...
Đọc tiếp

Bài 1:Giải các phương trình sau:

a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)

b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)

d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)

e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)

Bài 2:Cho a,b,c thỏa mãn a+b+c=1

Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Bài 3:Giải hệ phương trình:

\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)

Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:

\(x^2+2y^2+2xy-5x-5y=-6\)

Để (x+y) nguyên

Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện

\(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:

\(a\ne0\)\(4a+2b+c+d=0\)

Chứng minh \(b^2\ge4ac+4ad\)

Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt

 

2
2 tháng 4 2019

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

4 tháng 4 2019

Có bạn nào biết giải câu f ko giải hộ mình với