Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)
\(\Rightarrow a-b+c-d=2\)
\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)
\(\Rightarrow a+b+c+d=34\)
\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)
\(P\left(2\right)=32-16a+8b-4c+2d-2010\)
\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)
\(=-12a-4.18+2.16+6b-1978\)
\(=-12a+6b-2018=-2084\)
\(\Rightarrow2a-b=11\)
\(P\left(3\right)=243-81a+27b-9c+3d-2010\)
\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)
\(=243-72a+24b-9.18+3.16-2010=-2385\)
\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)
Từ đó ta có \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)
Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)
Cô hướng dẫn em câu d nhé, theo cô thấy thì đề của em không đúng, góc vuông ở đây là BND nhé ^^
Do F đối xứng với E qua A nên tam giác BEF cân tại B, từ đó góc FBA = góc ABE. Lại do câu b, góc ABE = góc AMD nên góc NBD bằng góc NMD. Vậy tứ giác BMDN nội tiếp.
Ta thấy góc BMD vuông nên BD là đường kính. Từ đó góc DNB vuông (đpcm)
Chúc em học tốt :))))
Ta có :
\(\left|a+b\right|< \left|a-b\right|\)
\(\Leftrightarrow\hept{\begin{cases}0< \left|a+b\right|\\0< \left|a-b\right|\end{cases}}\Leftrightarrow\hept{\begin{cases}0< a+b\\0< a-b\end{cases}}\Leftrightarrow\hept{\begin{cases}-a< b\\b< a\end{cases}}\Rightarrow\hept{\begin{cases}a>b\\b< a\end{cases}}\Rightarrow a>b\)
a: Thay x=0 và y=5 vào (d), ta được:
m*0+5=5
=>5=5(đúng)
=>ĐPCM
b: x1<x2; |x1|>|x2|
=>x1*x2<0
PTHĐGĐ là:
x^2-mx-5=0
Vì a*c<0
nên x1,x2 luôn trái dấu
=>Với mọi m
a)xet tam giac BOD va tam giac AOE có;
BO/AO=EO/DO
18/36=9/18
BOD=AOE(ĐĐ)
vay tam giac BOA đồng dạngvs tam giac AOE(cgc)
do tam giac BOA đồng dạngvs tam giac AOE suy ra EAO=DBO
b)xet tam giac ADC và tam giac BEC
EAO=DBO(cmt)
góc C chung
suy ra tam giac ADC đồng dạng tam giac BEC(gg)