Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x-m^2+m-4=0\left(1\right)\)
Để phương trình (1) có 2 nghiệm phân biệt thì:
\(\Delta>0\Rightarrow\left(-2\right)^2-4.\left(-m^2+m-4\right)>0\)
\(\Rightarrow4+4m^2-4m+16>0\)
\(\Leftrightarrow\left(2m-1\right)^2+19>0\) (luôn đúng)
Vậy với \(\forall m\) thì phương trình (1) luôn có 2 nghiệm phân biệt.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2+m-4\end{matrix}\right.\)
Ta có: \(\left|3x_1\right|-\left|x_2\right|=6\left(2\right)\)
Ta thấy:\(-m^2+m-4=-\left(m^2-m+\dfrac{1}{4}\right)-\dfrac{15}{4}=-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}< 0\)
\(\Rightarrow-m^2+m-4< 0\) hay \(x_1x_2< 0\). Do đó x1, x2 phải trái dấu.
Ta xét 2 trường hợp:
TH1, x1>0 , x2<0. Khi đó:
\(\left(2\right)\Rightarrow3x_1+x_2=6\)
\(\Rightarrow\left(x_1+x_2\right)-6=-2x_1\left(1'\right)\) và \(3\left(x_1+x_2\right)-6=2x_2\left(2'\right)\)
Lấy (1') nhân cho (2') ta được:
\(\left[\left(x_1+x_2\right)-6\right]\left[3\left(x_1+x_2\right)-6\right]=-4x_1x_2\)
\(\Rightarrow\left(-2-6\right)\left[3.\left(-2\right)-6\right]=-4\left(-m^2+m-4\right)\)
\(\Leftrightarrow-m^2+m-4=-24\)
\(\Leftrightarrow m^2-m+4=24\)
\(\Leftrightarrow m^2-m-20=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-4\end{matrix}\right.\)
TH2: x1<0 ; x2>0. Khi đó:
\(\left(2\right)\Rightarrow3x_1+x_2=-6\)
\(\Rightarrow\left(x_1+x_2\right)+6=-2x_1\left(3'\right)\) và \(3\left(x_1+x_2\right)+6=2x_2\left(4'\right)\)
Lấy (3') nhân cho (4') ta được:
\(\left[\left(x_1+x_2\right)+6\right]\left[3\left(x_1+x_2\right)+6\right]=-4x_1x_2\)
\(\Rightarrow\left(-2+6\right)\left[3.\left(-2\right)+6\right]=-4\left(-m^2+m-4\right)\)
\(\Rightarrow m^2-m+4=0\) (phương trình vô nghiệm)
Thử lại ta có \(\left[{}\begin{matrix}m=5\\m=-4\end{matrix}\right.\)
\(\Delta'=\left(m-1\right)^2+7m^2=8m^2-2m+1=8\left(m-\frac{1}{8}\right)^2+\frac{7}{8}>0;\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
Theo Viet \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-1\right)}{7}\\x_1x_2=-\frac{m^2}{7}\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\frac{4\left(m-1\right)^2}{49}+\frac{2m^2}{7}=\frac{18m^2-8m+4}{7}\)
a: a*c=-m^2-3<=-3<0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
b: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
=>\(\dfrac{x_2+x_1}{x_2x_1}=3\)
=>\(\dfrac{-2}{-m^2-3}=3\)
=>\(\dfrac{2}{m^2+3}=3\)
=>m^2+3=2/3
=>m^2=2/3-3=-7/3(vô lý)
Δ=(2m+2)^2-4(-m-5)
=4m^2+8m+4+4m+20
=4m^2+12m+24
=4(m^2+3m+6)
=4(m^2+2*m*3/2+9/4+15/4)
=4(m+3/2)^2+15>=15
=>PT luôn có 2 nghiệm
(x1-x2)^2-x1(x1+3)-x2(x2+3)=-4
=>(x1+x2)^2-4x1x2-(x1+x2)^2+2x1x2-3(x1+x2)=-4
=>-2(-m-5)-3(2m+2)=-4
=>2m+10-6m-6=-4
=>-4m+4=-4
=>-4m=-8
=>m=2
Pt có 2 nghiệm pb khi \(\Delta'=1-\left(m-3\right)>0\Rightarrow m< 4\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1^2-2x_2+x_1x_2=-12\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)-2x_2=-12\)
\(\Leftrightarrow2x_1-2x_2=-12\)
\(\Leftrightarrow x_1-x_2=-6\)
Kết hợp \(x_1+x_2=2\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1-x_2=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=4\end{matrix}\right.\)
Thế vào \(x_1x_2=m-3\)
\(\Rightarrow m-3=-8\Rightarrow m=-5\) (thỏa mãn)
Δ=(2m-2)^2-4(m+1)
=4m^2-8m+4-4m-4
=4m^2-12m
Để phương trình co hai nghiệm thì 4m^2-12m>0
=>m>3 hoặc m<0
x1/x2+x2/x1=4
=>x1^2+x2^2=4x1x2
=>(x1+x2)^2-2x1x2=4x1x2
=>(2m-2)^2-6(m+1)=0
=>4m^2-8m+4-6m-6=0
=>4m^2-14m-2=0
=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)
Δ=(2m-2)^2-4(m^2+m-2)
=4m^2-8m+4-4m^2-4m+8
=-12m+12
Để phương trình có hai nghiệm thì -12m+12>=0
=>m<=1
x1^2=6-x2^2-x1x2
=>(x1+x2)^2-2x1x2+x1x2=6
=>(x1+x2)^2-x1x2=6
=>(2m-2)^2-2(m^2+m-2)-6=0
=>4m^2-8m+4-2m^2-2m+4-6=0
=>2m^2-10m+2=0
=>\(m=\dfrac{5\pm\sqrt{21}}{2}\)