K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

a) thay m=5 vào pt (1) dc

\(\left(5-4\right)x^2-2.5x+5-2=0\)

<=>\(x^2-10x+3=0\)

<=>\(\left(x-5-\sqrt{22}\right)\left(x-5+\sqrt{22}\right)=0\)

<=>\(\left[{}\begin{matrix}x=5+\sqrt{22}\\x=5-\sqrt{22}\end{matrix}\right.\)

b)Thay x=-1 vào pt (1) dc

\(\left(m-4\right)\left(-1\right)^2-2m\left(-1\right)+m-2=0\)

<=>\(m-4+2m+m-2=0\)

<=>\(4m=6\)

<=>m=\(\dfrac{3}{2}\)

Pt có nghiệm nên

Áp dụng hệ thức Vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-4}\left(2\right)\\x_1.x_2=\dfrac{m-2}{m-4}\left(3\right)\end{matrix}\right.\)

Thay m=\(\dfrac{3}{2}\)và x=-1 vào pt (2) ta dc

\(-1+x=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-4}=-\dfrac{6}{5}\)

=>x=\(-\dfrac{1}{5}\)

c)\(\Delta'=\left[-\left(m\right)\right]^2-\left(m-4\right)\left(m-2\right)=m^2-\left(m^2-6m+8\right)=6m-8\)

pt có nghiệm kép <=>\(\Delta'=0\)

                             <=>\(6m-8=0< =>m=\dfrac{4}{3}\)

 

NV
7 tháng 1

Do pt có nghiệm \(x=1\) nên \(a+b+c=0\Rightarrow1-2m+m-4=0\)

\(\Rightarrow m=-3\)

Giá trị của nghiệm còn lại là: \(x_2=\dfrac{c}{a}=\dfrac{m-4}{1}=-7\)

20 tháng 4 2021

a thay vào mà tính, dễ rồi nên mình ko làm nữa nhé

b, Để phương trình  có 2 nghiệm phân biệt thì delta > 0 

hay \(4m^2-4\left(m-2\right)\left(m-4\right)=4m^2-4\left(m^2-6m+8\right)=6m-8>0\)

\(\Leftrightarrow-8>-6m\Leftrightarrow m>\dfrac{4}{3}\)

c, Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-4}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-2}{m-4}\end{matrix}\right.\)

Lại có: \(\left(x_1+x_2\right)^2=\dfrac{4m^2}{\left(m-4\right)^2}\Rightarrow x_1^2+x_2^2=\dfrac{4m^2}{\left(m-4\right)^2}-2x_1x_2\)

\(=\dfrac{4m^2}{\left(m-4\right)^2}-\dfrac{2m-4}{m-4}=\dfrac{4m^2-\left(2m-4\right)\left(m-4\right)}{\left(m-4\right)^2}\)

\(=\dfrac{4m^2-2m^2+12m-16}{\left(m-4\right)^2}=\dfrac{2m^2+12m-16}{\left(m-4\right)^2}\)

NV
15 tháng 2 2022

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

NV
15 tháng 2 2022

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0

=>-m=0

=>m=0

c: Để PT có hai nghiệm tráo dấu thì 3m-4<0

=>m<4/3

d: Δ=(-2m)^2-4(3m-4)

=4m^2-12m+16

=(2m-3)^2+7>=7

=>Phương trình luôn có hai nghiệm pb

Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0

=>m>4/3

1)Cho pt: x2-2mx+2m-3=0a)Tìm m để pt có nghiệm bằng -2. Tìm nghiệm còn lạib)Tìm m để pt có 2 nghiệm đều dương2)Một oto đi quãng đường AB dài 80km trong 1 thời gian đã định. 3434 quãng đường đầu oto chạy nhanh hơn dự định 10km/h. Quãng đường còn lại oto chạy chậm hơn dự định 15km/h. Biết rằng oto đến B đúng giờ quy định. Tính thời gian oto đi hết quãng đường AB?3) Cho C là 1 điểm nằm trên đoạn thẳng...
Đọc tiếp

1)Cho pt: x2-2mx+2m-3=0

a)Tìm m để pt có nghiệm bằng -2. Tìm nghiệm còn lại

b)Tìm m để pt có 2 nghiệm đều dương

2)Một oto đi quãng đường AB dài 80km trong 1 thời gian đã định. 3434 quãng đường đầu oto chạy nhanh hơn dự định 10km/h. Quãng đường còn lại oto chạy chậm hơn dự định 15km/h. Biết rằng oto đến B đúng giờ quy định. Tính thời gian oto đi hết quãng đường AB?

3) Cho C là 1 điểm nằm trên đoạn thẳng AB (C ≠A, C≠B). Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB kẻ 2 tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm I (I≠A), tia vuông góc với CI tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P

CM:

a)Tứ giác CPKB nội tiếp được đường tròn. Xác định tâm của tròn đó

b)AI.BK=AC.CB

c)Tam giác APB vuông

2

Bài 1: 

a) Thay x=-2 vào phương trình, ta được:

\(\left(-2\right)^2-2m\cdot\left(-2\right)+2m-3=0\)

\(\Leftrightarrow4+4m+2m-3=0\)

\(\Leftrightarrow6m=-1\)

hay \(m=-\dfrac{1}{6}\)

Áp dụng hệ thức Vi-et, ta được: 

\(x_1+x_2=2m\)

\(\Leftrightarrow x_2-2=\dfrac{-1}{3}\)

hay \(x_2=\dfrac{5}{3}\)

Bài 1: 

b) Ta có: \(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-3\right)\)

\(=4m^2-8m+12\)

\(=4m^2-2\cdot2m\cdot2+4+8\)

\(=\left(2m-2\right)^2+8>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm đều dương thì

\(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1\cdot x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m>0\\2m-3>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m>3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m>\dfrac{3}{2}\)