Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+mx+m+3=0\)
\(\Delta=m^2-4\cdot\left(m+3\right)\)
\(=m^2-4m-12\)
\(=\left(m-6\right)\left(m+2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le-2\\m\ge6\end{matrix}\right.\)
Theo định lý Viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-m}{2}\\x_1x_2=\frac{m+3}{2}\end{matrix}\right.\)
Từ đó ta có hệ :
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-m}{2}\\x_1x_2=\frac{m+3}{2}\\2x_1+3x_2=5\end{matrix}\right.\)
Pt cuối \(\Leftrightarrow2\left(x_1+x_2\right)+x_2=5\)
\(\Leftrightarrow-m+x_2=5\)
\(\Leftrightarrow x_2=m+5\)(1)
Thay lên pt đầu: \(m+5+x_1=\frac{-m}{2}\)
\(\Leftrightarrow x_1=\frac{-m}{2}-\frac{2\left(m+5\right)}{2}\)
\(\Leftrightarrow x_1=\frac{-m-2m-10}{2}=\frac{-3m-10}{2}\)(2)
Thay (1) và (2) vào pt giữa :
\(\left(m+5\right)\cdot\frac{-3m-10}{2}=\frac{m+3}{2}\)
\(\Leftrightarrow m=\frac{-13\pm\sqrt{10}}{3}\)( thỏa )
Vậy...
Is that true .-.
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)
Vậy PT có 2 nghiệm phân biệt với mọi m
Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)
Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)
Vậy \(4< m< 6\) thỏa yêu cầu đề
Để PT có 2 nghiệm thì:
∆' = (m - 1)2 - (m - 5) > 0
<=> m2 - 3m + 6 > 0
Đúng với mọi m.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m-5\end{cases}}\)
Theo đề ta có:
(2x1 - 1)(2x2 - 1) = 3
<=> 4x1x2 - 2(x1 + x2) = 2
<=> 4(m - 5) - 2(2m - 2) = 2
<=> 0m = 18
Vậy không tồn tại n thỏa mãn
\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2+m\right)\)
=4m^2+4m+1-4m^2-4m=1
=>PT luôn có hai nghiệm phân biệt
x1+x2>2 và x1x2>1
=>2m+1>2 và m^2+m>1
=>\(m>\dfrac{-1+\sqrt{5}}{2}\)