Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(\Delta=\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
b,A/D hệ thức vi et ta có
\(\hept{\begin{cases}x_1+x_2=\frac{3}{2}\\x_1x_2=-\frac{1}{2}\end{cases}}\)
ý cậu như nào >?
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
Ta có : \(ax^2+3\left(a+1\right)x+2a+4=0\left(a=a;b=3a+3;c=2a+4\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-3a-3}{a};x_1x_1=\frac{2a+4}{a}\)
Theo bài ra ta có : \(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\) Thay vào ta đc :
\(\Leftrightarrow\left(\frac{-3a-3}{a}\right)^2-2\left(\frac{2a+4}{a}\right)=4\)
\(\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a+8}{a}=4\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a^2+8a}{a^2}=\frac{4a^2}{a^2}\)
Khử mẫu ta đc : \(9\left(a+1\right)^2-4a^2+8a=4a^2\)
\(\Leftrightarrow9\left(a^2+2a+1\right)-4a^2+8a=4a^2\)
\(\Leftrightarrow9a^2+18a+9-4a^2+8a-4a^2=0\)
\(\Leftrightarrow a^2+27a+9=0\)Ta có : \(\Delta=27^2-4.9=729-36=613>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-27-\sqrt{613}}{2};x_2=\frac{-27+\sqrt{613}}{2}\)
cho PT 2x^2-3x-1=0. x1, x2 là 2 nghiệm của PT, không giải PT hãy tính A = x1^4 + x2^4. B = I x1-x2 I
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-4\right)}{m-2}\\x_1x_2=\frac{m-4}{m-2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-4\right)}{m-2}\\2x_1x_2=\frac{2\left(m-4\right)}{m-2}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2+2x_1x_2=0\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
a)
5x2+ 12x- 30= 0
x( 5x +12- 30)= 0
\(\orbr{\begin{cases}x=0\\5x+12-30=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\5x+12=30\end{cases}}\)
\(\orbr{\begin{cases}x=0\\5x=30-12\end{cases}}\)
\(\orbr{\begin{cases}x=0\\5x=18\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=18:5\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{18}{5}\end{cases}}\)
Vậy PT có tập nghiệm là T={18/5;0}
P/s: chị nhớ thêm dấu tương đương vào PT nhé :)
Để phương trình có 2 nghiệm \(x_1;x_2\)thì \(\Delta'=\left(m+2\right)^2-m^2-7>0\Rightarrow m^2+4m+4-m^2-7>0\)
\(\Rightarrow4m-3>0\Rightarrow m>\frac{3}{4}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m+4\\x_1.x_2=m^2+7\end{cases}}\)
Yêu cầu bài toán \(\Leftrightarrow m^2+7=4+2\left(2m+4\right)\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\Leftrightarrow\orbr{\begin{cases}m=-1\left(l\right)\\m=5\left(tm\right)\end{cases}}\)
Vậy \(m=5\)
\(\left\{{}\begin{matrix}x_1+x_2=3\\A=x_1x_2=-7\end{matrix}\right.\)
\(B=\left(x_1+x_2\right)^2-2x_1x_2=9-2\left(-7\right)=9+14=23\)