\(x^2-2mx+2m-1=0\)

 tìm m sao cho pt có 2 nghiệm thỏa mãn  

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2023

\(x^2-2mx+2m-1=0\)

\(\Delta'=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)

⇒ Phương trình có hai nghiệm .

Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

Có : \(x_1^2-5x_1x_2+x^2_2=25\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=25\) \(\Leftrightarrow4m^2-14m+7=25\Leftrightarrow4m^2-14m-18=0\Leftrightarrow2m^2-7m-9=0\Leftrightarrow\left(2m-9\right)\left(m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{9}{2}\\m=-1\end{matrix}\right.\)

Vậy...

25 tháng 3 2019

ĐK để pt có nghiệm thì \(\Delta\ge0\)

\(\Rightarrow4m^2-4\left(2m-1\right)\ge0\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\left(LĐ\right)\)

Theo hệ thức Viet:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

\(A=2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2=27\)

\(A=2\left[4m^2-4m+2\right]-10m+5=27\)

\(A=8m^2-8m+4-10m+5=27\)

\(\Rightarrow\left[{}\begin{matrix}m=3\\m=\frac{-3}{4}\end{matrix}\right.\)

16 tháng 4 2019

c, Với x\(_1\) = 2x\(_2\) thì :

x\(_1\) + x\(_2\) = 2m \(\Leftrightarrow\) 2x\(_2\) + x\(_2\) = 2m \(\Leftrightarrow\) x\(_2\) = \(\frac{2m}{3}\) \(\Rightarrow\) x\(_1\) = 2x\(_2\) = \(\frac{4m}{3}\)

Mà x\(_1\)x\(_2\) = 2m - 1

\(\Leftrightarrow\) \(\frac{4m}{3}\) * \(\frac{2m}{3}\) = 2m - 1 \(\Leftrightarrow\) \(\frac{8m^2}{9}\) = 2m - 1 \(\Leftrightarrow\) 8m\(^2\) = 18m - 9 \(\Leftrightarrow\) 8m\(^2\) - 18m + 9 = 0 (2) \(\Delta\)' = 9\(^2\) - 8*9 = 9 > 0 Vì \(\Delta\)' > 0 nên phương trình (2) có 2 nghiệm phân biệt : m\(_3\) = \(\frac{9+\sqrt{9}}{8}\) = 3/2 m\(_4\) = \(\frac{9-\sqrt{9}}{8}\) = 3/4 Vậy khi m = 3/2 hoặc m = 3/4 thì phương trình ban đầu luôn có 2 nghiệm x\(_1\), x\(_2\) thỏa mãn : x\(_1\)=2x\(_2\)

16 tháng 4 2019

Phương trình : x\(^2\) - 2mx + 2m - 1 = 0 (*)

a, phương trình (*) có : \(\Delta\)' = (-m)\(^2\) - 1*(2m - 1 )

= m\(^2\) - 2m + 1

= (m-1)\(^2\) (luôn \(\ge\) 0 với mọi m)

Do đó phương trình (*) luôn có nghiệm với mọi m

b, Áp dụng hệ thức Vi - ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=2m-1\end{matrix}\right.\)

Ta có :

A = 2(x\(_1\)\(^2\) + x\(_2\)\(^2\) ) - 5x\(_1\)x\(_2\)

= 2*[(x\(_1\)+x\(_2\))\(^2\) - 2x\(_1\)x\(_2\)] - 5x\(_1\)x\(_2\)

= 2*(x\(_1\)+x\(_2\))\(^2\) - 4x\(_1\)x\(_2\) - 5x\(_1\)x\(_2\)

= 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\)

Vậy A = 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\)

Mà A = 27

\(\Leftrightarrow\) 2*(x\(_1\)+x\(_2\))\(^2\) - 9x\(_1\)x\(_2\) = 27

\(\Leftrightarrow\) 2*(2m)\(^2\) - 9*(2m-1) = 27

\(\Leftrightarrow\) 8m\(^2\) - 18m + 9 = 27

\(\Leftrightarrow\) 8m\(^2\) - 18m - 18 = 0 (1)

\(\Delta\)' = 9\(^2\) - 8*(-18) = 225 > 0

\(\Rightarrow\) \(\sqrt{\Delta'}\) = \(\sqrt{225}\) = 15

\(\Delta\)' > 0 nên phương trình (1) có 2 nghiệm phân biệt

m\(_1\)= \(\frac{9+15}{8}\) = 3

m\(_2\)= \(\frac{9-15}{8}\) = \(\frac{-3}{4}\)

Vậy với m = 3 hoặc m = -3/4 thì A = 27

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
12 tháng 2 2020

\(x^2-2mx+2m-1=0\)

\(\Delta=\left(2m\right)^2-4\cdot\left(2m-1\right)\)

\(=4m^2-8m+4\)

\(=4\left(m-1\right)^2\ge0\) ( luôn đúng )

Vậy phương trình luôn có 2 nghiệm phân biệt \(\forall m\).

Theo định lý Viete:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

Lại có: \(x_1^2-5x_1x_2+x_2^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=25\)

\(\Leftrightarrow\left(2m\right)^2-7\left(2m-1\right)=25\)

\(\Leftrightarrow4m^2-14m-18=0\)

\(\Leftrightarrow\left(m+1\right)\left(2m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\frac{9}{2}\end{matrix}\right.\)

Vậy...

12 tháng 2 2020

Thank you very much 3000 !!!

13 tháng 5 2019

Bạn tham khảo tại đây nhé:

Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath

a, thay m = 3 vào pt ta đc

x2  - ( 2 . 3 +1)x + 2.3 = 0

x2  - 7x + 6 =0

ta có a + b+c= 1 -7 + 6=0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1 

                                       x2 = 6

b, x2 - (2m +1 )x + 2m=0

 \(\Delta\)= [ - (2m + 1 )]2  - 4.2m

        = 4m2 + 4m + 1 - 8m 

          = 4m2 - 4m + 1 

         = (2m-1)2 \(\ge\)\(\forall\)m

để pt có 2 nghiệm pb thì   2m - 1 \(\ne\)

                                          m \(\ne\)1/2

theo hệ thức vi ét ta có

x1 + x2 = 2m + 1

x1 x2 = 2m

ta có | x1| - |x2| = 2

       ( |x1| - |x2| )2 = 4

       x12  - 2 |x1x2| + x22   =4

        x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4

  ( x1 + x2)2  - 2 |x1x2| = 4

(2m + 1 )2 - 2|2m|=4   (1 )

+, nếu 2m \(\ge\)\(\Rightarrow\)\(\ge\)0 thì

(1)\(\Leftrightarrow\)(2m + 1)2  - 4m = 4

                   4m2 + 4m + 1 - 4m = 4

                     4m2 = 3

                        m2 = 3/4

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)

+, 2m < 0 suy ra m < 0 thì 

(1) : (2m + 1 )2  + 4m =4

          4m2 + 4m + 1 + 4m = 4

           4m2 + 8m - 3 =0

       \(\Delta\)= 64 + 4.4.3 = 112 > 0

pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)\(\frac{-2+\sqrt{7}}{2}\)(ko tm)

                                x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)

vậy m \(\in\){\(\frac{\sqrt{3}}{2}\)\(\frac{-2-\sqrt{7}}{2}\)} thì ...........

ko bt có đúng ko nữa 

#mã mã#

25 tháng 6 2020

Theo vi ét

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{-2m}{-1}=2m\\x_1.x_2=\frac{c}{a}=\frac{-2m+3}{-1}=2m+3\end{matrix}\right.\)

là như vậy mà bạn

27 tháng 6 2020

@Hân Khả bạn cũng sai nốt, đoạn \(\frac{-2m+3}{-1}=2m+3\)